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1 Horn Formula Practice

Find the variable assignment that solves the following horn formulas:

1. (w ∧ y ∧ z)⇒ x, (x ∧ z)⇒ w, x⇒ y,⇒ x, (x ∧ y)⇒ w, (w̄ ∨ x̄,∨ȳ), (z̄)

2. (x ∧ z)⇒ y, z ⇒ w, (y ∧ z)⇒ x,⇒ z, (z̄ ∨ x̄), (w̄ ∨ ȳ ∨ z̄)

2 Huffman Proofs

1. Prove that in the Huffman coding scheme, if some character occurs with frequency
more than 2

5 , then there is guaranteed to be a codeword of length 1. Also prove that
if all characters occur with frequency less than 1

3 , then there is guaranteed to be no
codeword of length 1.

2. Under a Huffman encoding of n symbols with frequencies f1, f2, . . . , fn, what is the
longest a codeword could possibly be? Give an example set of frequencies that would
produce this case, and argue that it is the longest possible.
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3 Finding Counterexamples

In this problem, we give example greedy algorithms for various problems, and your goal is to
find an example where they are not optimal.

(a) In the travelling salesman problem, we have a weighted undirected graph G(V,E) with
all possible edges. Our goal is to find the cycle that visits all the vertices exactly once
with minimum length.

One greedy algorithm is: Build the cycle starting from an arbitrary start point s, and
initialize the set of visited vertices to just s. At each step, if we are currently at vertex
u and our cycle has not visited all the vertices yet, add the shortest edge from u to an
unvisited vertex v to the cycle, and then move to v and mark v as visited. Otherwise,
add an edge from the current vertex to s the cycle, and return the now complete cycle.

(b) In the maximum matching problem, we have an undirected graph G(V,E) and our goal
is to find the largest matching E′ in E, i.e. the largest subset E′ of E such that no two
edges in E′ share an endpoint.

One greedy algorithm is: While there is an edge e = (u, v) in E such that neither u or v is
already an endpoint of an edge in E′, add any such edge to E′. (Can you prove that this
algorithm still finds a solution whose size is at least half the size of the best solution?)

4 Worst-case Instances for Greedy Set-Cover

Recall the set cover problem:

Input: A set of elements B and sets S1, . . . , Sm ⊆ B.

Output: A selection of the Si whose union is B (i.e. that contain every element of B).

Cost: Number of sets picked.

The natural strategy to solve this problem is a greedy approach: At every step, pick the
set that covers the most uncovered elements of B. In the book, we proved that this greedy
strategy over-estimates the optimal number of sets by a factor of at most O(log n), where
n = |B|. In this problem we will prove that this bound is tight.
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Show that for any integer n that is a power of 2, there is an instance of the set cover
problem (i.e. a collection of sets S1, . . . , Sm) with the following properties:

i. There are n elements in the base set B.

ii. The optimal cover uses just two sets.

iii. The greedy algorithm picks at least O(log n) sets.

5 Planting Trees

This problem will guide you through the process of writing a dynamic programming algo-
rithm.

You have a garden and want to plant some apple trees in your garden, so that they
produce as many apples as possible. There are n adjacent spots numbered 1 to n in your
garden where you can place a tree. Based on the quality of the soil in each spot, you know
that if you plant a tree in the ith spot, it will produce exactly xi apples. However, each tree
needs space to grow, so if you place a tree in the ith spot, you can’t place a tree in spots i−1
or i + 1. What is the maximum number of apples you can produce in your garden?

(a) Give an example of an input for which:

� Starting from either the first or second spot and then picking every other spot (e.g.
either planting the trees in spots 1, 3, 5 . . . or in spots 2, 4, 6 . . .) does not produce
an optimal solution.

� The following algorithm does not produce an optimal solution: While it is possible
to plant another tree, plant a tree in the spot where we are allowed to plant a tree
with the largest xi value.
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(b) To solve this problem, we’ll thinking about solving the following, more general problem:
“What is the maximum number of apples that can be produced using only spots 1 to
i?”. Let f(i) denote the answer to this question for any i. Define f(0) = 0, as when we
have no spots, we can’t plant any trees. What is f(1)? What is f(2)?

(c) Suppose you know that the best way to plant trees using only spots 1 to i does not place
a tree in spot i. In this case, express f(i) in terms of xi and f(j) for j < i. (Hint: What
spots are we left with? What is the best way to plant trees in these spots?)

(d) Suppose you know that the best way to plant trees using only spots 1 to i places a tree
in spot i. In this case, express f(i) in terms of xi and f(j) for j < i.

(e) Describe a linear-time algorithm to compute the maximum number of apples you can
produce. (Hint: Compute f(i) for every i. You should be able to combine your results
from the previous two parts to perform each computation in O(1) time).
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