
CS 170, Fall 2018 DIS 06 A. Chiesa & S. Rao

CS 170 DIS 06

Released on 2018-10-08

1 Shortest Paths with Dynamic Programming!

In this problem we will design a dynamic programming algorithm for finding the shortest
S − E path in a DAG like the one above.

(a) What are the subproblems you need to solve?

(b) Can you define the optimal solution to any subproblem as a function of the solutions to
other subproblems?

(c) The dependency graph of a DP is a directed graph in which each subproblem becomes
a vertex, and edge (u, v) denotes that subproblem u requires the solution to subproblem
v in order to be solved. What does the dependency graph look like for this problem?
What property of the dependency graph allows us to solve the problem using DP?

(d) If we proceed iteratively, what would be the best order to solve these subproblems?

(e) How many subproblems are there, and how long does it take to solve each? What is the
overall running time of this algorithm?

(f) Run your algorithm on the example graph. What is the shortest path?

1

CS 170, Fall 2018 DIS 06 A. Chiesa & S. Rao

Solution:

(a) We need to know the minimum length paths from the start node to the nodes on possible
paths from S to E. This will allow us to evaluate which nodes we should include on our
path.

(b) Yes. We know that out of all direct ancestors Ai of E, at least one of them must be
on the shortest path from S to E. Let dist(V) denote the subproblem of finding the
shortest path from S to some vertex V . For any U in the graph, we can argue that
shortest distance from S to U is min{dist(A1) + l(A1, U), ..., dist(AN) + l(AN , U)}.

(c) Let’s think about the dependency graph this gives us. We know dist(V) is dependent
on the dist(Ai) for all direct ancestors of V . Thus the dependency graph will look
like the reverse of the given graph! And since our given graph is a DAG, we know
the dependency graph will also be a DAG. The fact that the dependency graph is a
DAG is quite significant. By construction the dependency graph is directed. But more
importantly, if the dependency graph is acyclic, we know that we don’t have some set
of subproblems that are all mutually dependent on each other (and thus impossible to
solve). When the dependency graph of a problem is a DAG, we sometimes say that this
problem possesses an ”optimal substructure” that makes it solvable via DP.

(d) When we get to a subproblem, we want to have computed the dist value for all its
direct ancestors. Thus it makes the most sense to solve subproblems in topological order,
starting from S, since all direct ancestors of a vertex must come before it in topological
order.

(e) There are |V | subproblems total. This gives us |V | work to look at each subproblem
once. Then, for each subproblem, we need to iterate through all the ancestors of the
given vertex (this is precisely equal to the vertex’s in-degree). In any directed graph, the
sum of the indegrees of each node is precisely equal to the sum of outdegrees, which is
precisely equal to |E| (since each edge contributes to the indegree of exactly one node,
and the outdegree of exactly one node).

(f) SCDE

2 String Shuffling

Let x, y, and z be strings. We want to know if z can be obtained only from x and y by inter-
leaving the characters from x and y such that the characters in x appear in order and the char-
acters in y appear in order. For example, if x = efficient and y = ALGORITHM, then it
is true for z = effALGiORciIenTHMt, but false for z = efficientALGORITHMS (extra
characters), z = effALGORITHMicien (missing the final t), and z = effOALGRicieITHMnt
(out of order). How can we answer this query efficiently? Your answer must be able to effi-
ciently deal with strings with lots of overlap, such as x = aaaaaaaaaab and y = aaaaaaaac.

1. Design an efficient algorithm to solve the above problem and state its runtime.

2

CS 170, Fall 2018 DIS 06 A. Chiesa & S. Rao

2. Consider an iterative implementation of our DP algorithm in part (a). Naively if we
want to keep track of every solved sub-problem, this requires O(|x||y|) space (double
check to see if you understand why this is the case). How can we reduce the amount of
space our algorithm uses?

Solution:

1. First, we note that we must have |z| = |x| + |y|, so we can assume this. Let S(i, j)
be true if and only if the first i characters of x and the first j characters of y can be
interleaved to make the first i + j characters of z. Then x and y can be interleaved to
make z if and only if S(|x|, |y|) is true.

For the recurrence, if S(i, j) is true then either zi+j = xi, zi+j = yj , or both. In the
first case it must be that the first i − 1 characters of x and the first j characters of y
can be interleaved to make the first i+ j− 1 characters of z; that is, S(i− 1, j) must be
true. In the second case S(i, j − 1) must be true. In the third case we can have either
S(i− 1, j) or S(i, j − 1) or both being true. This yields the recurrence:

S(i, j) = (S(i− 1, j) ∧ (xi = zi+j)) ∨ (S(i, j − 1) ∧ (yj = zi+j))

The base case is S(0, 0) = T ; we also set S(0,−1) = S(−1, 0) = F for convenience. The
running time is O(|x||y|).
Somewhat naively if we’d like an iterative solution, we can keep track of the solutions
to all subproblems with a 2D array where the entry at row i, column j is S(i, j). If we
iterate over this array row by row, going left to right, we’ll always be able to fill in the
next entry using values we’ve already computed.

Notice, however, that to compute any entry, we only really need the infomration in the
previous row, and the current row we’re filling out. Thus, rather than holding onto
the entire table, we only need to store the current and previous row, reducing us from
O(m ∗ n) space to O(m) space.

2. We can keep track of the solutions to all subproblems with a 2D array of size |x||y|
where the entry at row i, column j is S(i, j). If we iterate over this array row by
row, going left to right, we’ll always be able to fill in the next entry using values we’ve
already computed.

Notice, however, that to compute any entry, we only really need the infomration in the
previous row, and the current row we’re filling out. Thus, rather than holding onto
the entire table, we only need to store the current and previous row, reducing from
O(|x||y|) space to O(min(|x|, |y|)) space.

3 Vertex cover

A vertex cover of a graph G = (V,E) is a subset of vertices S ⊆ V that includes at least one
endpoint of (covers) every edge e ∈ E. Give a dynamic programming algorithm which finds
a vertex cover of a tree T .

3

CS 170, Fall 2018 DIS 06 A. Chiesa & S. Rao

For instance, in the following tree, possible vertex covers include {A,B,C,D,E, F,G}
and {A,C,D, F} but not {C,E, F}. The smallest vertex cover has size 3: {B,E,G}.

B

A

C

E

D

F

G

(Bonus: can you find a greedy algorithm for this problem?)

Solution: The subproblem V (u) will be defined to be the size of the minimum vertex
cover for the subtree rooted at node u. We have V (u) = 0 if u is a leaf, as the subtree rooted
at u has no edges to cover. The crucial observation is that if a vertex cover does not use a
node it has to use all its neighboring nodes. Hence, for any internal node i, we can either use
node i, or we do not use node i, and instead use its children:

V (i) = min

1 +
∑

j:(i,j)∈E

V (j),
∑

j:(i,j)∈E

1 +
∑

k:(j,k)∈E

V (k)


Note that because T is a tree, the solutions to the subproblems are independent. The
algorithm can then solve all the subproblems in order of decreasing depth in the tree and
output V (n). Note that any edge (i, j) is used at most twice - once for calculating V (i) and
once for calculating V (k) for k the parent of i. Hence the running time is O(|V | + |E|) =
O(|V |).

Bonus: the greedy algorithm arises from the observation that if we have a vertex cover S
where some leaf v of T is in S, we can turn it into a vertex cover which is no larger where v /∈ S
by replacing v with its parent. Hence there is a minimum vertex cover S with no leaves; then
S must contain the parents of all leaves. The greedy algorithm works by iteratively applying
this observation.

4

	Shortest Paths with Dynamic Programming!
	String Shuffling
	Vertex cover

