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1 Job Assignment

There are I people available to work J jobs. The value of person i working 1 day at job j
is aij for i = 1, . . . , I and j = 1, . . . , J . Each job is completed after the sum of the time of
all workers spend on it add up to be 1 day, though partial completion still has value (i.e.
person i working c portion of a day on job j is worth aijc). The problem is to find an optimal
assignment of jobs for each person for one day.

(a) What variables should we optimize over? I.e. in the canonical linear programming
definition, what is x?

Solution: An assignment x is a choice of numbers xij where xij is the portion of person
i’s time spent on job j.

(b) What are the constraints we need to consider? Hint: there are three major types.

Solution: First, no person i can work more than 1 day’s worth of time.

J∑
j=1

xij ≤ 1 for i = 1, . . . , I.

Second, no job j can be worked past completion:

I∑
i=1

xij ≤ 1 for j = 1, . . . , J.

Third, we require positivity.

xij ≥ 0 for i = 1, . . . , I, j = 1, . . . , J.
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(c) What is the maximization function we are seeking?

Solution: By person i working job j for xij , they contribute value aijxij . Therefore, the
net value is

I,J∑
i=1,j=1

aijxij = A • x.

2 Understanding convex polytopes

So far in this class we have seen linear programming defined as

(P) =

{
max cTx

s.t. Ax ≤ b.

Today, we explore the different properties of the region Ω = {x : Ax ≤ b} – i.e. the region
that our linear program maximizes over.

Figure 1: An example of a convex polytope. We can consider each face of the polytope
as an affine inequality and then the polytope is all the points that satisfy each inequality.
Notice that an affine inequality defines a half-plane and therefore is also the intersection of
the half-planes.

(a) The first property that we will be interested in is convexity. We say that a space X is
convex if for any x, y ∈ X and λ ∈ [0, 1],

λx+ (1− λ)y ∈ X.
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That is, the entire line segment xy is contained in X. Prove that Ω is indeed convex.

Solution: Let x, y ∈ Ω. We need to show that

A(λx+ (1− λ)y)) ≤ b.

We apply the only facts we know, namely Ax ≤ b and Ay ≤ b.

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay

≤ λb+ (1− λ)b

= b.

(b) The second property that we will be interested in is showing that linear objective func-
tions over convex polytopes achieve their maxima at the vertices. A vertex is any point
v ∈ Ω such that v cannot be expressed as a point on the line yz for v 6= y, v 6= z, and
y, z ∈ Ω.

Prove the following statement: Let Ω be a convex space and f a linear function f(x) =
cTx. Show that the for a line yz for y, z ∈ Ω that f(x) is maximized on the line at either
y or z. I.e. show that

max
λ∈[0,1]

f(λy + (1− λ)z)

achieves the maximum at either λ = 0 or λ = 1.

Solution: Assume without loss of generality that f(y) ≥ f(z). (Otherwise, swap their
names). Then cT y ≥ cT z. We now aim to show the maximum is achieved at λ = 1.
Then,

f(λy + (1− λ)z) = cT (λy + (1− λ)z)

= λcT y + (1− λ)cT z

≤ λcT y + (1− λ)cT y

= f(y).
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(c) Now, prove that global maxima will be achieved at vertices. For simplicity, you can
assume there is a unique global maximum. Hint: Use the definition of a vertex presented
above. (Side note: This argument is the basis of the Simplex algorithm by Dantzig to
solve linear programs.)

Solution: Assume, for contradiction, that the maximum was not achieved at a vertex
and was instead achieved at a point x that was not a vertex. Then, there exists a line
y, z containing x such that x 6= y and x 6= z. But by the previous argument, the function
achieves a maximum at either y or z. then, the maximum isn’t unique. A contradiction.

3 Residual in graphs

Consider the following graph with edge capacities as shown:
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(a) Consider pushing 4 units of flow through S → A → C → T . Draw the residual graph
after this push.

Solution:
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(b) Compute a maximum flow of the above graph. Find a minimum cut. Draw the residual
graph of the maximum flow.

Solution: A maximum flow of value 11 results from pushing:

• 4 units of flow through S → A→ C → T ;

• 5 units of flow through S → B → T ; and

• 2 units of flow through S → A→ B → T .

(There are other maximum flows of the same value, can you find them?) The resulting
residual graph (with respect to the maximum flow above) is:
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A minimum cut of value 11 is between {S,A,B} and {C, T} (with cross edges A → C
and B → T ).

4 Verifying a max-flow

Suppose someone presents you with a solution to a max-flow problem on some network. Give
a linear time algorithm to determine whether the solution does indeed give a maximum flow.

Solution: The max-flow algorithm has found the maximum flow when there is no s− t
path in the residual graph. Therefore, we just search for an s− t path in the residual graph
of the given flow to see if the given flow is maximal.
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procedure CheckFlow(G, f)
Check that ∀v ∈ V, v 6= s, t,

∑
(u,v)∈E fuv =

∑
(v,w)∈E fvw

Compute Gf , the residual flow network of f .
Run BFS(Gf , s)
If BFS finds an s-t path, return false, otherwise return true.

Checking that f is a valid flow takes O(|V |+ |E|) time. Constructing Gf takes O(|V |+ |E|)
time. Running BFS on Gf takes O(|V | + |E|) time since Gf has |V | vertices and ≤ 2|E|
edges. Therefore, the algorithm is O(|V |+ |E|), which is linear.
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