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1 Maximal Matching

Let G = (V, E) be a (not necessarily bipartite) undirected graph. A mazimal matching, M,
is a matching in which no edge can be added while keeping it a matching. Show that the size
of any maximal matching is at least half the size of a maximum matching M*.

Solution: Assume for contradiction that there is a maximal matching M whose size is
less than half the size of a maximal matching M*. We will show that we can improve the
matching on M by adding an edge from M*, contradicting the claim that M is maximal. To
see this note that for each (u,v) € M, there are at most two edges in M* incident on u or
v (one for each vertex). Therefore, at most 2|M| edges in M* are incident on some vertex
appearing in M. Since 2|M| < |M*|, there is an edge e € M™* not incident on any vertex in
M. So M U {e} is a matching, and M is not maximal.

2 Bipartite Vertex Cover

A vertex cover of an undirected graph G = (V, E) is a subset of the vertices which touches
every edge. In other words, a subset S C V such that for each edge {u,v} € E, one or both
of u,v are in S.

Show that the problem of finding the minimum vertex cover in a bipartite graph reduces
to maximum flow. Prove that your reduction is correct.

Hint: use the max-flow min-cut theorem.

Solution: Let LU R be the bipartition of the graph G. Construct a network G’ by adding
a dummy source node s, with edges going out to every vertex of L, and a dummy target node
t, with edges coming in from every vertex of R. Direct the remaining original edges so that
they go from L to R. Let the edges adjacent to s or ¢t have capacity 1 and the original edges
have infinite capacity.

Consider any (s,t)-cut (S,S) (s € S) in this network which has size less than co. Let Eg
be the set of edges crossing the cut from S to S. Then for all e € Eg, e is incident to either
s or t (otherwise the cut contains an infinite capacity edge). Let C' be the set of all vertices
except s and t incident to edges in E. Then C is a vertex cover of G: if not, then there is
some {u,v} € F for u € L,v € R with u,v ¢ C, so no edge on the path s — u — v — t crosses
the cut, a contradiction. Note |C| = |Eg| which is the size of the cut (S, 5).

On the other hand, let C' be a vertex cover of GG. Let S C V consist of the set of vertices in
L which are not in C, the set of vertices in R which are in C, and s. Consider the set of edges
Egs crossing the s-t cut from S to S. First, suppose that Eg contains an infinite capacity
edge e = (u,v). Since u € S, u ¢ C, but then since v ¢ S, v ¢ C, and so C does not cover
e. Hence Eg contains only edges with capacity 1. Moreover |Eg| = |LNC|+ |RNC| = |C],
and so the size of the cut (S, S) is |C|.

Let (S, S) be a minimum cut in G’. Then C obtained as above is a minimum vertex cover

of G: suppose not; then there is a smaller vertex cover C’ of GG, but then there is a smaller
cut (9,5 in G'.
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3 Reducing Vertex Cover to Set Cover

In the minimum vertex cover problem, we are given an undirected graph G = (V, E) and
asked to find the smallest set U C V that “covers” the set of edges E. In other words, we
want to find the smallest set U such that for each (u,v) € E, either u or v is in U (U is not
necessarily unique). For example, in the following graph, {A, E,C, D} is a vertex cover, but
not a minimum vertex cover. The minimum vertex covers are {B, E,C} and {A, E,C}.

() ()

Recall the following definition of the minimum Set Cover problem: Given a set U of elements
and a collection S1, . . . , S, of subsets of U, what is the smallest collection of these sets
whose union equals U? So, for example, given U := {a,b,c,d}, S1 := {a,b,c}, Sy := {b,c},
and S3 := {c, d}, a solution to the problem is the collection of S; and Ss.

Give an efficient reduction from the Minimum Vertex Cover Problem to the Minimum
Set Cover Problem.

Solution: Let G = (V, E) be an instance of the Minimum Vertex Cover Problem. Create
an instance of the Minimum Set Cover Problem where U = E and for each v € V, the
set S, contains all edges adjacent to u. Let C' = {Sy,,Su,,--.,5,} be a set cover. Then
our corresponding vertex cover will be u, us,...,u;. To see this is a vertex cover, take any
(u,v) € E. Since (u,v) € U, there is some set S, containing (u,v), so u; equals u or v and
(u,v) is covered in the vertex cover.

Now take any vertex cover up,...,u;. To see that Sy,,..., Sy, is a set cover, take any
(u,v) € E. By the definition of vertex cover, there is an i such that either u = u; or v = w;,.
So (u,v) € Sy;, 80 Sy, ..., S, 1s a set cover.

Since every vertex cover has a corresponding set cover (and vice-versa) and minimizing
set cover minimizes the corresponding vertex cover, the reduction holds.

4 Midterm Discussion

What did you find most challenging on the midterm? Are there any problems in particular
you would like to discuss?
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