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1 Maximal Matching

Let G = (V,E) be a (not necessarily bipartite) undirected graph. A maximal matching, M ,
is a matching in which no edge can be added while keeping it a matching. Show that the size
of any maximal matching is at least half the size of a maximum matching M∗.

Solution: Assume for contradiction that there is a maximal matching M whose size is
less than half the size of a maximal matching M∗. We will show that we can improve the
matching on M by adding an edge from M∗, contradicting the claim that M is maximal. To
see this note that for each (u, v) ∈ M , there are at most two edges in M∗ incident on u or
v (one for each vertex). Therefore, at most 2|M | edges in M∗ are incident on some vertex
appearing in M . Since 2|M | < |M∗|, there is an edge e ∈ M∗ not incident on any vertex in
M . So M ∪ {e} is a matching, and M is not maximal.

2 Bipartite Vertex Cover

A vertex cover of an undirected graph G = (V,E) is a subset of the vertices which touches
every edge. In other words, a subset S ⊂ V such that for each edge {u, v} ∈ E, one or both
of u, v are in S.

Show that the problem of finding the minimum vertex cover in a bipartite graph reduces
to maximum flow. Prove that your reduction is correct.

Hint: use the max-flow min-cut theorem.
Solution: Let L∪R be the bipartition of the graph G. Construct a network G′ by adding

a dummy source node s, with edges going out to every vertex of L, and a dummy target node
t, with edges coming in from every vertex of R. Direct the remaining original edges so that
they go from L to R. Let the edges adjacent to s or t have capacity 1 and the original edges
have infinite capacity.

Consider any (s,t)-cut (S, S̄) (s ∈ S) in this network which has size less than ∞. Let ES

be the set of edges crossing the cut from S to S̄. Then for all e ∈ ES , e is incident to either
s or t (otherwise the cut contains an infinite capacity edge). Let C be the set of all vertices
except s and t incident to edges in E. Then C is a vertex cover of G: if not, then there is
some {u, v} ∈ E for u ∈ L, v ∈ R with u, v /∈ C, so no edge on the path s− u− v − t crosses
the cut, a contradiction. Note |C| = |ES | which is the size of the cut (S, S̄).

On the other hand, let C be a vertex cover of G. Let S ⊆ V consist of the set of vertices in
L which are not in C, the set of vertices in R which are in C, and s. Consider the set of edges
ES crossing the s-t cut from S to S̄. First, suppose that ES contains an infinite capacity
edge e = (u, v). Since u ∈ S, u /∈ C, but then since v /∈ S, v /∈ C, and so C does not cover
e. Hence ES contains only edges with capacity 1. Moreover |ES | = |L ∩ C|+ |R ∩ C| = |C|,
and so the size of the cut (S, S̄) is |C|.

Let (S, S̄) be a minimum cut in G′. Then C obtained as above is a minimum vertex cover
of G: suppose not; then there is a smaller vertex cover C ′ of G, but then there is a smaller
cut (S′, S̄′) in G′.
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3 Reducing Vertex Cover to Set Cover

In the minimum vertex cover problem, we are given an undirected graph G = (V,E) and
asked to find the smallest set U ⊆ V that “covers” the set of edges E. In other words, we
want to find the smallest set U such that for each (u, v) ∈ E, either u or v is in U (U is not
necessarily unique). For example, in the following graph, {A,E,C,D} is a vertex cover, but
not a minimum vertex cover. The minimum vertex covers are {B,E,C} and {A,E,C}.

A B C D

E F

Recall the following definition of the minimum Set Cover problem: Given a set U of elements
and a collection S1, . . . , Sm of subsets of U , what is the smallest collection of these sets
whose union equals U? So, for example, given U := {a, b, c, d}, S1 := {a, b, c}, S2 := {b, c},
and S3 := {c, d}, a solution to the problem is the collection of S1 and S3.

Give an efficient reduction from the Minimum Vertex Cover Problem to the Minimum
Set Cover Problem.

Solution: Let G = (V,E) be an instance of the Minimum Vertex Cover Problem. Create
an instance of the Minimum Set Cover Problem where U = E and for each u ∈ V , the
set Su contains all edges adjacent to u. Let C = {Su1 , Su2 , . . . , Suk

} be a set cover. Then
our corresponding vertex cover will be u1, u2, . . . , uk. To see this is a vertex cover, take any
(u, v) ∈ E. Since (u, v) ∈ U , there is some set Sui containing (u, v), so ui equals u or v and
(u, v) is covered in the vertex cover.

Now take any vertex cover u1, . . . , uk. To see that Su1 , . . . , Suk
is a set cover, take any

(u, v) ∈ E. By the definition of vertex cover, there is an i such that either u = ui or v = ui.
So (u, v) ∈ Sui , so Su1 , . . . , Suk

is a set cover.
Since every vertex cover has a corresponding set cover (and vice-versa) and minimizing

set cover minimizes the corresponding vertex cover, the reduction holds.

4 Midterm Discussion

What did you find most challenging on the midterm? Are there any problems in particular
you would like to discuss?

2


	Maximal Matching
	Bipartite Vertex Cover
	Reducing Vertex Cover to Set Cover
	Midterm Discussion

