
CS 170, Fall 2018 DIS 11 A. Chiesa & S. Rao

CS 170 DIS 11

Released on 2018-11-13

1 Local Search for Max Cut

Sometimes, local search algorithms can give good approximations to NP-hard problems. In
the Max-Cut problem, we have a graph G(V,E) and want to find a cut (S, T) with as many
edges crossing as possible. One local search algorithm is as follows: Start with any cut, and
while some vertex v in S has more neighbors in S than T , we move v from S to T (we do the
same for any vertex v in T with more neighbors in T than S). Note that any time we move
a vertex across the cut, the number of edges crossing the cut increases.

(a) Give an upper bound on the number of iterations this algorithm can run for (i.e. the
total number of times we move a vertex).

(b) Show that when all vertices have more neighbors on the opposite side of the cut, at least
half the edges in the graph cross the cut.

Solution:

(a) |E| iterations. Each iteration increases the number of edges crossing the cut by at least
1. The number of edges crossing the cut is between 0 and |E|, so there must be at most
|E| iterations.

(b) Let δin(v) be the number of edges from v to other vertices on the same side of the cut,
and δout(v) be the number of edges from v to vertices on the opposite side of the cut.
Then, the total number of edges crossing the cut is 1

2

∑
v∈V δout(v) whereas the total

number of edges in the graph is 1
2

∑
v∈V (δin(v) + δout(v)). We know that δout(v) > δin(v)

for all v, so the former is at least half as large as the latter.

2 Multiway Cut

In the multiway cut problem, we are given a graph G(V,E) with k special vertices s1, s2 . . . sk.
Our goal is to find the smallest set of edges F which when removed from the graph disconnect
the graph into at least k components where each si is in a different component. When k = 2,
this is exactly the min s-t cut problem, but if k ≥ 3 the problem becomes NP-hard.

Consider the following algorithm: Let Fi be the set of edges in the minimum cut with si
one one side and all other special vertices on the other side. Output F , the union of all Fi.
Note that this is a multiway cut because removing Fi from G isolates si in its own component.

(a) Explain how each Fi can be found in polynomial time.

(b) Let F ∗ be the smallest multiway cut. Consider the components that removing F ∗ dis-
connects G into, and let Ci be the vertices in the component with si. Let F ∗i be the set
of edges in F ∗ with exactly one endpoint in Ci. How many different F ∗i does each edge
in F ∗ appear in? How do the size of Fi and F ∗i compare?

1

CS 170, Fall 2018 DIS 11 A. Chiesa & S. Rao

(c) Using your answer to the previous part, show that |F | ≤ 2|F ∗|. (Challenge: How could
you modify this algorithm to output F such that |F | ≤ (2− 2

k)|F ∗|?)

(As an aside, consider the minimum k-cut problem, where we want to find the smallest set
of edges F whose removal disconnects the graph into at least k components. The following
greedy algorithm for minimum k-cut gets a (2− 2

k)-approximation: Initialize F to the empty
set. While G(V,E − F) has less than k components, find the minimum cut within each
component of G(V,E − F), and add the edges in the smallest of these cuts to F . Showing
this is a (2− 2

k)-approximation is fairly difficult.)
Solution:

(a) Consider adding a vertex t to the graph and connecting t to all special vertices except
si with infinite capacity edges. Then Fi is the minimum si-t cut, which we know how to
find in polynomial time.

(b) Each edge in F ∗ appears in exactly two of the sets F ∗i .

Note that F ∗i is the set of edges in a cut which disconnects si from the other special
vertices. Then by definition Fi has fewer edges than F ∗i since Fi is the minimum cut
disconnecting si from all other special vertices.

(c) We combine the answers to the previous part and note that F ’s size is at most the total
size of all Fi to get:

|F | ≤
∑
i

|Fi| ≤
∑
i

|F ∗i | = 2|F ∗|

To get the (2 − 2
k)-approximation, after computing all Fi, we instead output F as the

union of all Fi except for the one with the most edges. Let this be Fj . This is still a
multiway cut because each sj is still disconnected from all other si. Then:

|F | ≤
∑
i 6=j

|Fi| ≤ (1− 1

k
)
∑
i

|Fi| ≤ (1− 1

k
)
∑
i

|F ∗i | = (2− 2

k
)|F ∗|

3 Fast Modular Exponentiation

Give a polynomial time algorithm for computing ab
c

mod p for prime p and integers a, b,
and c.

Solution: We know how to compute xy mod z efficiently for any x, y, z: Square x and
apply mod z repeatedly to compute x, x2, x4 . . . all mod z. Then xy can be written as
some product of these (e.g. x5 = x ∗ x4), so we can compute xy easily.

Then, we show how to reduce this problem to two instances of finding xy mod z:

� Since p is prime, by Fermat’s Little Theorem, we know ap−1 mod p = 1. So we first
find d = bc mod (p− 1).

� We then note that ab
c

mod p = ad mod p. Then, we just compute ad mod p.

2

CS 170, Fall 2018 DIS 11 A. Chiesa & S. Rao

4 Fermat’s Little Theorem as a Primality Test

Recall that Fermat’s Little Theorem states the following:
”For a prime p and a coprime with p, ap−1 ≡ 1 (mod p).”

Assume for a general (not necessarily prime) p, we want to determine if p is prime. It may
be tempting to try to use Fermat’s Little Theorem as a test for primality. That is, pick some
random a and compute ap−1 (mod p). If this is equal to 1, return that p is prime, else return
that it is composite. In this question we will investigate how effective this method actually
is.

(a) Suppose we wanted to test if 15 was prime. What is a choice of a that would trick us
into thinking it is prime? What is a choice of a that would lead us to the correct answer?
For choices of a that trick us into believing p is prime, we often say that p is ”Fermat
pseudoprime” to base a.

(b) Suppose there exists some a in {1, . . . p − 1} such that ap−1 6≡ 1 (mod p), where a is
coprime with p. Show that p is not Fermat pseudoprime to at least half the numbers in
(mod p). How might we use this to make our algorithm more effective?

(c) Given the improvement from the previous question, why might our algorithm still fail to
be a good primality test?

Solution:

(a) A choice of a that would trick us into thinking 15 is prime is 4. There are a few other
numbers we could have used here. A choice of a that would lead us to the correct answer
is 7.

(b) Let’s assume there is at least one number b such that bp−1 ≡ 1 (mod p). (a ∗ b)p−1 6≡ 1
(mod p). Further more, for each possible choice of b, a ∗ b will be a unique number. This
is the case since a necessarily has an inverse in mod p, making the function f(x) = a ∗ x
(mod p) a bijection. For every b that p is Fermat pseudoprime to, we have a unique a
that would have led us to the correct answer. Thus at least half the numbers (mod p)
would lead us to the correct answer.
We can improve our algorithm by checking multiple a rather than just 1. This doesn’t
increase our runtime substantially, but will sharply decrease the probability of a false
positive.

(c) For prime p we will always arrive at the correct answer. For non-prime p, we know that
when there exists an a coprime with p such that ap−1 6≡ 1 (mod p), we will probably
arrive at the correct answer. However, we are not guaranteed the existence of such an a
in the first place. There are potentially numbers where no such a exists. These numbers
are called Carmichael numbers.

3

	Local Search for Max Cut
	Multiway Cut
	Fast Modular Exponentiation
	Fermat's Little Theorem as a Primality Test

