CS 170 DIS 11

Released on 2018-11-13

1 Local Search for Max Cut

Sometimes, local search algorithms can give good approximations to NP-hard problems. In the Max-Cut problem, we have a graph G(V, E) and want to find a cut (S, T) with as many edges crossing as possible. One local search algorithm is as follows: Start with any cut, and while some vertex v in S has more neighbors in S than S, we move S to S to S to the same for any vertex S in S with more neighbors in S than S. Note that any time we move a vertex across the cut, the number of edges crossing the cut increases.

- (a) Give an upper bound on the number of iterations this algorithm can run for (i.e. the total number of times we move a vertex).
- (b) Show that when all vertices have more neighbors on the opposite side of the cut, at least half the edges in the graph cross the cut.

2 Multiway Cut

In the multiway cut problem, we are given a graph G(V, E) with k special vertices $s_1, s_2 \dots s_k$. Our goal is to find the smallest set of edges F which when removed from the graph disconnect the graph into at least k components where each s_i is in a different component. When k = 2, this is exactly the min s-t cut problem, but if $k \ge 3$ the problem becomes NP-hard.

Consider the following algorithm: Let F_i be the set of edges in the minimum cut with s_i one one side and all other special vertices on the other side. Output F, the union of all F_i . Note that this is a multiway cut because removing F_i from G isolates s_i in its own component.

(a) Explain how each F_i can be found in polynomial time.

(b) Let F^* be the smallest multiway cut. Consider the components that removing F^* disconnects G into, and let C_i be the vertices in the component with s_i . Let F_i^* be the set of edges in F^* with exactly one endpoint in C_i . How many different F_i^* does each edge in F^* appear in? How do the size of F_i and F_i^* compare?

(c) Using your answer to the previous part, show that $|F| \leq 2|F^*|$. (Challenge: How could you modify this algorithm to output F such that $|F| \leq (2 - \frac{2}{k})|F^*|$?)

(As an aside, consider the minimum k-cut problem, where we want to find the smallest set of edges F whose removal disconnects the graph into at least k components. The following greedy algorithm for minimum k-cut gets a $(2-\frac{2}{k})$ -approximation: Initialize F to the empty set. While G(V, E-F) has less than k components, find the minimum cut within each component of G(V, E-F), and add the edges in the smallest of these cuts to F. Showing this is a $(2-\frac{2}{k})$ -approximation is fairly difficult.)

3 Fast Modular Exponentiation

Give a polynomial time algorithm for computing $a^{b^c} \mod p$ for prime p and integers $a,\ b,$ and c.

4 Fermat's Little Theorem as a Primality Test

Recall that Fermat's Little Theorem states the following:

"For a prime p and a coprime with $p, a^{p-1} \equiv 1 \pmod{p}$."

Assume for a general (not necessarily prime) p, we want to determine if p is prime. It may be tempting to try to use Fermat's Little Theorem as a test for primality. That is, pick some random a and compute $a^{p-1} \pmod{p}$. If this is equal to 1, return that p is prime, else return that it is composite. In this question we will investigate how effective this method actually is.

(a) Suppose we wanted to test if 15 was prime. What is a choice of a that would trick us into thinking it is prime? What is a choice of a that would lead us to the correct answer? For choices of a that trick us into believing p is prime, we often say that p is "Fermat pseudoprime" to base a.

(b) Suppose there exists some a in $\{1, \dots p-1\}$ such that $a^{p-1} \not\equiv 1 \pmod{p}$, where a is coprime with p. Show that p is not Fermat pseudoprime to at least half the numbers in \pmod{p} . How might we use this to make our algorithm more effective?

(c) Given the improvement from the previous question, why might our algorithm still fail to be a good primality test?