
U.C. Berkeley — CS170 : Algorithms Midterm One

Lecturers: Sanjam Garg and Prasad Raghavendra Oct 7, 2015

Midterm One

Name:

SID:

GSI and section time:

Answer all questions. Read them carefully first. Be precise and concise. The number of points indicate

the amount of time (in minutes) each problem is worth spending. Not all parts of a problem are weighted

equally. Write in the space provided, and use the back of the page for scratch. Box numerical final answers.

Good luck!

1

When an explanation is required, answer with one or two short
sentences. (20 points)

1. For the directed graph below, find the strongly connected components and draw the DAG of strongly

connected components.

A

C

J

B

D

F

E

G

H

2. Execute DFS on the following undirected graph starting at node D breaking ties alphabetically. Mark

the pre and post values of the nodes.

A

C

J

B

D

F

E

G

H

Node pre post

A

B

C

D

E

F

G

H

J

2

3. In an implementation of Bellman-Ford, starting with the initialization dist(A) = 0, dist(B) = dist(C) =

dist(D) = dist(E) = dist(F) =1, the following sequence of updates are applied on the graph shown

below.

A B

C D

E F

1) update(A! C)

2) update(B ! D)

3) update(A! B)

4) update(C ! D)

5) update(F ! E)

6) update(C ! E)

7) update(D ! F)

8) update(B ! D)

9) update(D ! F)

10) update(F ! E)

11) update(C ! D)

12) update(A! C)

13) update(A! B)

14) update(C ! E)

15) update(D ! F)

16) update(B ! D)

17) update(A! B)

18) update(C ! D)

19) update(F ! E)

20) update(C ! E)

What is the earliest step at which the distance to F guaranteed to be correct, for all possible weights

on the edges? Justify your answer.

4. Describe the naive algorithm for Fourier transform. What is its running time?

(Briefly and precisely describe the algorithm, no need to prove the correctness)

Input: a0, . . . , an�1 2 R
Output: the Fourier transform b0, . . . , bn�1 using ! the nth root of unity

3

Find the bug (10 points)

5. Are these algorithms and/or their proofs correct? Justify your answers (If the algorithm is correct,

justify why and if the algorithm is incorrect, either give a counterexample or justify why).

(a) Divide and Conquer Algorithm for MST MST(G: graph on n vertices)

• T1 MST(G1: subgraph of G induced on vertices {1, . . . , n/2})
• T2 MST(G2: subgraph of G induced on vertices {n/2 + 1, . . . , n})
• e cheapest edge across the cut {1, . . . , n

2 } and {n
2 + 1, . . . , n}.

• return T1 [T2 [{e}.

Proof of correctness By the cut property, the cheapest edge e across the cut {1, . . . , n
2 } and

{n
2 +1, . . . , n} belongs to an MST T . On removing the edge e from T , the resulting subtrees must

be the minimum spanning trees connecting {1, . . . , n
2 } and {n

2 + 1, . . . , n}.

(b) Greedy DFS for shortest paths

Input: Graph G = (V,E),a starting vertex s and non-negative lengths `e for each

edge e 2 E.

Goal: Compute shortest path to a vertex v

Run DFS, but at each node explore the shortest outgoing edge first until v is reached.

Return the s to v path in the DFS tree.

4

True or false? Circle the right answer. No explanation needed
(15 points)

(No points will be subtracted for wrong answers, so guess all you want!)

1) T F By starting with number 3 and repeatedly squaring it 1000 times, we can compute 3

21000

within a day on a laptop.

2) T F In a graph, if one raises the lengths of all edges to the power 3, the minimum spanning

tree will stay the same.

3) T F FFT (1, 2, 3, 4) + FFT (�1,�2,�3,�4) = [0, 0, 0, 0]

4) T F If an�1 ⌘ 1 (mod n) for some positive integers a < n, then n is a prime.

5) T F The solution of the recurrence T (n) = 3T (n/3) +O(n3
) is T (n) = O(n3

).

6) T F Given a polynomial of degree 2

n� 1, the FFT works by recursively computing 2

n
points

of two polynomials of degree 2

n�1 � 1 and then combining the results.

7) T F The randomized algorithm to find the median is always faster than running mergesort

to find the median.

8) T F The first edge added by Kruskals’s algorithm can be the last edge added by Prim’s

algorithm.

9) T F log

⇤
(2

n
) = 2 log

⇤ n

10) T F The heaviest edge in a graph cannot belong to the minimum spanning tree.

11) T F The longest path in a graph can be computed by negating the cost of all the edges in

the graph and then running Bellman-Ford.

12) T F The maximum spanning tree (spanning tree of maximum cost) can be computed by

negating the cost of all the edges in the graph and then computing minimum spanning

tree.

13) T F The family consisting of all possible functions f : {1, . . . , 216} ! {1, . . . , 256} is a uni-

versal hash family.

14) T F If H : Z ! {1, . . . , 170} is a universal hash family of functions, then for every pair of

distinct keys x, y there is some function f 2 H such that f(x) 6= f(y).

15) T F If all edge weights in a graph are either 1 or 2, then the shortest path can be computed

in O(|V |+ |E|) time.

5

Semi-Connected Graphs (15 points)

6. A directed graph G = (V,E) is semi-connected if for every pair of vertices u, v either there is a path

from u to v or there is a path from v to u or both.

(a) Give an example of a DAG that is not semi-connected.

(b) State a necessary and su�cient condition for a DAG to be semi-connected.

6

(c) Given a DAG, exhibit an algorithm to check if it is semi-connected. (Formal pseudocode is

unnecessary, briefly but precisely describe the algorithm and argue its correctness)

7

Shortest Path with Time-Dependent Edges (20 points)

7. Mr. Albert is on a vacation in Switzerland. There are n cities in Switzerland and m trains T1, . . . , Tm

between cities. Each train Ti departs city origin[i] at time dep[i] and arrives in city destination[i] at
time arr[i]. Di↵erent trains between the same pair of cities could have di↵erent journey times.

Albert can switch trains at a station instantaneously, i.e., Albert can arrive at time t, switch trains

and depart on a train leaving at time t.

Albert starts his journey at time 0. The arrival and departure times arr[] & dep[] are specified in the

units – “hours from the time Albert started his journey”.

(a) Modify Djikstra’s algorithm to compute the quickest route to city B starting in city A at time 0.

(proof of correctness or running time bound not required)

for all cities v, dist[v] =1
dist[A] = 0

H makeQueue(); // priority queue containing cities with dist values

while H is nonempty

v deleteMin(H)

for every train Ti from city v do

(write your pseudocode here)

8

(b) Albert does not mind the train journeys, but really hates waiting at the stations. Albert would

like to find an itinerary that reaches B within 3 days, but minimizes the total wait time at the

train stations. Design an algorithm to find such a path.

(Hint: Model the problem using a di↵erent graph whose nodes specify more than just the city

where Albert is. Running Djikstra’s algorithm in this graph would give the desired path.)

(Briefly but precisely describe the graph, and argue the correctness of the algorithm.)

9

