
U.C. Berkeley — CS170 : Algorithms Final
Lecturers: Sanjam Garg and Prasad Raghavendra Dec, 15 2017

Final Solution

Name:

SID:

Exam Room:

SID of student to your left:

SID of student to your right:

Do not turn this page until your instructor tells you to do so.



1 TRUE OR FALSE? (11 POINTS)

1 True or False? (11 points)

Bubble in the right answer. No explanation needed. No points will be sub-
tracted for wrong answers, so guess all you want! This part will be graded
automatically. Please mark your answer clearly.

1. For every real 0 < x ≤ 1,
∑n

i=1 x
i is O(1) in terms of n asymptotically.

True

False

False

2. Dijkstra’s algorithm (without any modification) can be used to compute the shortest path between
2 vertices in a DAG with exactly one edge having a negative weight (all other edges have a positive
weight).

True

False

Everyone gets points. The problem can be interpreted in two ways. (1) If we call Dijkstra’s algorithm
only once at the starting vertex, then it may not give the right answer. (2) On the other hand, if we
are allowed to run Dijkstra’s multiple times, we can run it once at the starting node and once at the
node for which the negative-edge weight originates from, and use the information produced to compute
the correct answer.

3. A bipartite graph can contain a simple cycle that consists of an odd number of unique vertices.

True

False

False

4. If a bipartite graph has a perfect matching of size n, then the minimum vertex cover of this graph
must be also be of size equal to n. (A perfect matching is a bijective pairing of vertices).

True

False

True

5. It is possible that one-way permutations exist and P = NP.

True

False

False

2



SID:

6. For every odd prime p and every integer a ∈ {1, ..., p− 1}, a(p−1)/2 is either 1 or -1 modulo p.

True

False

True

3



1 TRUE OR FALSE? (11 POINTS)

7. It is possible that problem A reduces to problem B, problem B reduces to problem C, problem C
reduces to problem A, problem A is NP-complete and problem B is in P. (Assuming P 6= NP)

True

False

False

8. Doubling the capacities of all edges of a graph G doubles the maximum flow.

True

False

True

9. Factoring is known to be NP-hard.

True

False

False

10. Consider a graph with exactly one edge having rational capacity and all other edges having integral
capacities. The max flow in this graph must be integral.

True

False

False

11. The maximum weight edge in a cut of the graph can never be a part of a MST.

True

False

False

4



SID:

2 Fill in the Blanks (20 points)

When asked for a bound, always give the tightest bound possible. Some ques-
tions have choices in parentheses after the answer box

1. (4 points) The node that receives the highest post (pre/post) number in

a depth-first search must lie in a source (source/sink) strongly connected

component.

2. (2 points) If an undirected graph with no duplicate edges has a cycle then it must have at least

3 edges.

3. (2 points) The space complexity of the Floyd-Warshall algorithm (all-pairs shortest path dynamic

programming algorithm) is O(n2) or O(n3) , where n and m are the number

of vertices and edges in the graph, respectively.

4. (2 points) Let x = BERKELEY and y = BARKELY and E(i, j) be the edit distance between

x[1 · · · i] and y[1 · · · j]. Then, E(2, 3) = 2 .

5. (2 points) Continuing from above, E(8, 7) = 2 .

6. (2 points) A degree d polynomial is uniquely characterized by its values at any d + 1

points.

7. (2 points) A directed graph has a cycle if and only if its depth-first search reveals a back

(tree/forward/back/cross) edge.

8. (2 points) The size of the maximum flow in a network is always ≤ (<, ≤, =,

≥, >) the capacity of any (s, t)-cut.

9. (2 points) In union/find data structure of n items, if we use union by size without path compression then

a any combination of m unions and/or find operations takes at most O(m log n)

time.

5



3 ZERO-SUM GAMES (9 POINTS)

3 Zero-Sum Games (9 points)

Consider a zero-sum game given by the following matrix (indicating the payoffs to the row player)

C1 C2 C3

R1 −2 3 1
R2 3 −1 2
R3 −1 4 −1

Suppose the column player has fixed the following probabilistic strategy:

C1 C2 C3
1
3

1
3

1
3

what is the best strategy for the row player?

R1 R2 R3

0.0 1.0 0.0

The value the row player gains from choosing R1 is 2/3, from R2 is 4/3, and R3 is 2/3, so the row player
should choose R2 always.

If row player chooses to play as above, then instead of the above (uniformly random) column player strategy
what would have been the best strategy that the column player could have taken?

C1 C2 C3

0.0 1.0 0.0

The value the column player gains from choosing C1 is -3, from C2 is 1, and C3 is -2, so the column player
should choose C2 always.

6



SID:

4 Mind Reading Strategy (20 points)

Alice has chosen a number x from {1, . . . , n} and Bob is trying to guess the number. Bob can ask Alice
questions of the form: Is x ≥ i? for some i ∈ {1, . . . , n}. For each such asked question, Alice answers YES
or NO. Let pi denote the probability that Alice’s chosen number is i. (Note that

∑n
i=1 pi = 1.)

Bob knows these probabilities, and would like to devise a strategy to determine Alice’s number correctly
while minimizing the expected number of questions asked.

Given the probabilities pi as input, design a dynamic programming algorithm to compute the expected
number of questions needed for the best possible strategy for Bob.

1. Clearly define a subproblem that could be used to efficiently solve this problem.

2. What are the base cases?

3. What is the recurrence relation?

7



4 MIND READING STRATEGY (20 POINTS)

1. Let Q(a, b) be a n×n matrix that represents the expected number of questions Bob has to ask in order
to figure out which of the numbers ∈ [a, b] is correct.

2.
Q(a, a) = 0 for all a from 1 to n

It takes 0 guesses for Bob to figure out what Alice’s number is if he’s narrowed down his search space
to a single number.

3. The expected number of guesses that Bob has to make in order to figure out Alice’s number from
{a ... b} is one plus the expected number of questions he has to ask after asking the best question
possible AKA the question which minimizes the expected number of questions he has to ask down the
line. For asking the best question, if Bob has narrowed his search space down to {a ... b}, the only
intelligent questions he can ask are: Is x ≥ k? for k from a+1 to b. That means the recurrence relation
will take a minimum over the values a + 1 to b.

Q(a, b) = 1 + min
k∈{a+1 ... b}

E[remaining number of questions after guessing k]

For computing the expected number of questions down the line, we take an expectation over Alice’s
responses to Bob’s question. That is to say,

E[remaining number of questions after guessing k] = P (Alice says YES)·Q(k, b)+P (Alice says NO)·Q(a, k−1)

The probability that Alice says YES can be computed by summing up the probabilities that Alice
chose a number ≥ k and dividing by the sum of the probabilities that Alice chose a number in [a, b].
The probability that Alice says NO, then, is one minus this quantity.

P (Alice says YES) =

∑b
i=k pi∑b
i=a pi

P (Alice says NO) = 1−
∑b

i=k pi∑b
i=a pi

8



SID:

5 Melting Snow (15 points)

You are given a terrain map in the form of a N ×N array T ; namely, the value T (i, j) represent the height
of the location (i, j). As global temperature increases, snow melts and water flows through the terrain. At
a particular coordinate, water will flow to the neighbor coordinate with the smallest height. Break ties
arbitrarily. A neighboring coordinate could be directly or diagonally adjacent. Water stops flowing at a
coordinate if all neighboring heights are greater or equal. These coordinates are called end coordinates.

For each coordinate (i, j), your task is to determine the coordinate (i′, j′) that the water will ultimately flow
to starting with the coordinate (i, j). Specifically, your algorithm should output an N ×N array M with the
following property. For each i, j, M [i, j] is equal to the coordinate that water will ultimately flow to starting
with from the coordinate (i, j).

a Provide the main idea or pseudocode of your algorithm. Ideally your answer should be in bullet point
format.

b What is the runtime in Θ notation?

9



5 MELTING SNOW (15 POINTS)

Solution 1 - DP

Start at a coordinate, go to the neighbor with the smallest height value. Traverse until you reach an
end coordinate (smallest height among neighbors). Once you have found this coordinate, backtrack on this
path and for each coordinate, set their destination to be the end coordinate found above.

Continue and move on to the next vertex. The traversal will only start at a coordinate if the destina-
tion coordinate has not been calculated yet. If the destination has already been set, then stop the traversal
and for all coordinates on the current path, set their destination coordinates to the destination of your
current position.

This ensures that you do not re-compute paths. Each vertex is visited at most three times: reached from
another vertex, backtracked to set destination, potentially starting a traversal.

Runtime Θ(N2)

Solution 2 - Graph Traversal

We can create N2 vertices to represent the coordinates. Connect a directed edge (v, u) if v is a neigh-
bor of u and has the lowest height. The source nodes of this graph are the end coordinates. Run DFS from
these source nodes. For each DFS tree, set the destination coordinate of all nodes in that tree to be the
coordinate of the root. Runtime Θ(N2) due to graph construction.

Solution 3 - Graph Traversal 2

Create vertices as above. Connect a directed edge (u, v) if v is a neighbor of u and has the lowest height.
Run recursive DFS from each vertex if that vertex does not have a destination set yet. Have the recursive
call return the coordinate of the sink. In the function post(u) after the recursive call, set u’s destination to
be the return value of the recursive call, which would be the coordinate of the sink. This is exactly like the
DP solution but wrapped around a data structure.

10



SID:

6 Short Selling (35 points)

1. 2 trades (15 points)
In stock trading, short selling is the act of selling a stock that you don’t own (by borrowing) with the
promise to buy it back in the future. To profit from this, you would want to sell high first and then
buy low at a later date. You are given an array of stock prices in chronological order S[1..N ]. Profit
off 1 trade in the period is defined as such that i and j are indices to S.

S[i]− S[j], 1 ≤ i < j ≤ n

Suppose you can make up to two transactions over the period such that you have to complete the first
transaction before initiating the second one. You can perform Sell Buy Sell Buy, but not Sell Sell Buy
Buy. You are allow to make 0 or 1 instead of 2 if it’s not profitable to make 2 transactions. If you
make a sell action, it must be paired with a buy action with a later index.

Provide an efficient algorithm to determine the largest total profit if you are allowed to make
up to 2 trades.

For example, if S = [5, 2, 6, 4, 10, 3, 7], can profit 3 if you sell at 6 and buy at 3. Can profit 5 if
you sell at 6, buy at 4, sell at 10, and buy at 7.

a Provide the main idea or pseudocode of your algorithm. Ideally your answer should be in bullet
point format.

b What is the runtime in Θ notation?

11



6 SHORT SELLING (35 POINTS)

The idea is to add up max profit of S[1..i] using one transaction and max profit S[i + 1..N ] using one
transaction. However we can do this in O(N) time instead of Θ(N2) time.

• Solution

Idea is to create 2 arrays. One contains best profit up to day i with 1 transaction and the
other contains best profit from day i.

– Fill in A[] as best profit with 1 transaction from day i by traversing in reverse order. Keep and
update a running minimum. At A[i] take larger of A[i + 1] or profit with running minimum
(S[i]− running-min).

– Fill in B[] as best profit up to day i by traversing in order. Keep and update a running
maximum. Update B[i] by taking larger of B[i + 1] or profit with running maximum.

– Iterate i and compute best profit of A[i] + B[i]. This will contain at most two transactions.

We could use only one array by skipping steps 3 and 4 and find best profit directly by traversing
A[] in order, keep a running maximum, and update A[i] accordingly.

Runtime Θ(N)

Rubric Explanation

• Minimal partial for Θ(N2).

• More partial credit for a solution that is not optimal, but goes in the right direction of linear.

• If you solve part (b) and specified to solve part (a) with k = 2, you will be award full credit if
you part (b) runtim is Θ(NK). However, this is acheived in the implementation level, not the
recurrence level. Thus to get full credit here, you must explain how to get to linear from part (b).
Otherwise it will be graded like above.

12



SID:

2. k trades (20 points)
Now find the largest profit if we can short sell at most K times. Again you cannot interleave sell and
buy actions. It must be Sell Buy Sell Buy ...

(a) What are the subproblems?

(b) What are the base cases?

(c) What is the recurrence relation?

(d) What is the runtime in Θ notation?

Let P (t, i) be maximum profit using at most t transactions up to and including day i.

P (t, i) = max

{
P (t, i− 1) no transaction on day i

maxj=1..i S[j]− S[i] + P (t− 1, j − 1) best transaction on day i

13



6 SHORT SELLING (35 POINTS)

P (0, i) = 0

P (t, 0) = 0

Runtime is Θ(kn2). Can optimize by buying shares on i-th day in constant time.

We will also accept Θ(kn) solution, but it is not needed for full credit for this part.

One way to achieve Θ(kn) is to create an array of running maxes of S[j] + P (t − 1, j − 1). We
do this in the inner loop when when update i by 1. At this update, we can append the next running
max of S[j] + P (t − 1, j − 1), j = i to the array. Thus when we no longer need a third loop for the
inner max.

Another way to see this is to rewrite the inner max loop.

max
j=1..i

S[j]− S[i] + P (t− 1, j − 1) = max
j=1..i

{
S[j] + P (t− 1, j − 1)

}
− S[i]

= max
{

max
{
P [t− 1][j] + S[j]

}
, S[i− 1] + P (t− 1, i− 1)

}
− S[i] ∀j ∈ [1..n− 1]

That inner max can be computed in constant time in the inner loop as it will serve as a running-max.

14



SID:

7 NP-Completeness Reductions (38 points)

Show that the following problems are NP-complete by providing a polynomial-time reduction. You may skip
showing that the given problem is in NP. You may assume that the following problems are NP-complete:
Rudrata Path or Hamiltonian Path, Hamiltonian Cycle, Vertex Cover, Independent Set, 3-SAT, CircuitSAT,
Integer Linear Programming, Clique, 3D Matching, Partition, and Subset Sum.

1. Set Packing. (8 points)
Input: Subsets S1, . . . , Sm of a set U and a positive integer k ≤ m.
Question: Are there k subsets among S1, . . . , Sm that are mutually disjoint (i.e. the intersection of
any two subsets are empty)?

Proof: We will reduce the problem A ... to the problem B ...

Given an instance Φ of the problem A we construct an instance Ψ of the problem B

as follows ...

The proof that this is a valid reduction is as follows:

Proof: We can reduce from 3D Matching. Given an instance Φ of 3D Matching, we can construct an
instance Ψ of Set Packing as follows. Let the set U = {p1, . . . , pn, b1, . . . , bn, g1, . . . , gn} be the set of all
pets, boys and girls in Φ and let k = n. For each tuple (pi, bj , gk), we create one set S` = {pi, bj , gk}.
The reduction clearly runs in polynomial time and it is obvious that a collection of tuples is a valid
matching for Φ if and only if their corresponding sets is a valid (set packing) solution of Ψ.

15



7 NP-COMPLETENESS REDUCTIONS (38 POINTS)

2. Bin Packing. (10 points)
Input: n items with sizes a1 · · · an respectively, a positive integer B (bin capacity) and a positive integer
k (number of bins).
Question: Is there a partition of the set {1 · · ·n} into sets S1, . . . , Sk such that for each i ∈ {1 · · · k}
we have that

∑
j∈Si

aj ≤ B?

Proof: We will reduce the problem A ... to the problem B ...

Given an instance Φ of the problem A we construct an instance Ψ of the problem B

as follows ...

The proof that this is a valid reduction is as follows:

Proof : We will reduce from Partition to Bin Packing. Given an instance Φ of Partition we construct
an instance Ψ of Bin Packing as follows. Given items of size a1 . . . an in Φ, create items of the same

sizes in Ψ. Also, let k = 2 and let B =
∑

i ai

2 in Ψ.

We can argue the correctness of the reduction as follows.

16



SID:

• If there is a partition (P, S \ P ) of the elements S = {a1 . . . an} in Φ such that
∑

i∈P ai =∑
i∈S\P ai, then the same partition satisfies the requirements of Ψ, which are to find a partition

of S = {a1 . . . an} into k = 2 subsets such that the sum of the elements in each is ≤ B =
∑

i ai

2 .

This is because both
∑

i∈P ai and
∑

i∈SP ai are equal to (and therefore ≤)
∑

i ai

2 .

• If there is a partition of the elements S = {a1 . . . an} in Ψ into k = 2 subsets (S1, S2) such that∑
i∈S1

ai ≤ B AND
∑

i∈S2
ai ≤ B, then this same partition satisfies the requirements of Φ, which

are to find a partition (P, S \ P ) of S such that
∑

i∈P ai =
∑

i∈S\P ai, because by partitioning S

into two subsets (S1, S2) where the sum of the elements in either is ≤
∑

i ai

2 , we must have the

sum of the elements in each is exactly B =
∑

i ai

2 . Otherwise, if one of them was not, the sum of
the elements in one of the sets would be greater than B.

17



7 NP-COMPLETENESS REDUCTIONS (38 POINTS)

3. Quadratic Assignment Problem. (10 points)
Input: Integers n and b, two (n× n) integer-value matrices C = {cij}1≤i,j≤n and D = {dkl}1≤k,l≤n.
Question: Is there a permutation f : {1, ..., n} → {1, ..., n} such that

∑n
i=1

∑n
j=1 cijdf(i)f(j) ≤ b?

Hint: Rudrata Path/Cycle.

Proof: We will reduce the problem A ... to the problem B ...

Given an instance Φ of the problem A we construct an instance Ψ of the problem B

as follows ...

The proof that this is a valid reduction is as follows:

Proof: We will reduce from Rudrata Path to Quadratic Assignment Problem (QAP). Given an instance
G = (V,E) of Rudrata Path where n is the number of vertices, label the vertices by numbers from 1
to n. We create an instance of QAP where the matrix D is the adjacency matrix of G, i.e., dij is equal
to one if (i, j) ∈ E and zero otherwise. As for the matrix C, we set ci,i+1 = -1 for all i = 1, ..., n − 1
and cij = 0 for all j 6= i+ 1. Finally, let b = −(n− 1). Clearly, the reduction runs in polynomial time.

18



SID:

Observe that for the instance that we construct, since the only non-zero entries of C are ci,i+1’s which

are equal to -1,
∑n

i=1

∑n
j=1 cijdf(i)f(j) can be simplified to −

∑n−1
i=1 df(i),f(i+1).

Suppose that there is a Rudrata path v1, ..., vn. Then, for the permutation f defined by f(i) = vi, we

have −
∑n−1

i=1 df(i),f(i+1) = −(n− 1) = b as desired.

On the other hand, if there exists a permutation f such that
∑n−1

i=1 df(i),f(i+1) ≥ n− 1, then we must
have df(1),f(2) = · · · = df(n−1),f(n) = 1 since each number is either zero or one. From our definition of
D, this means that f(1), ..., f(n) form a Rudrata path in G.

19



7 NP-COMPLETENESS REDUCTIONS (38 POINTS)

4. Induced Path. (10 points)
Input: An undirected graph G = (V,E) and an integer k.
Question: Is there an induced path of length k (i.e. a sequence of k distinct vertices v1, . . . , vk such
that there exists an edge in G between every pair of consecutive vertices and and for every pair of
non-consecutive vertices there does not exists an edge in G)?

Hint: Try to modify the reduction from 3SAT to Independent Set, in which you create a vertex
for every literal in every clause, so that which vertex is chosen in the independent set means which
literal is set to true for the clause. Try to follow a similar strategy and think about how to connect
edges, and make use of the fact that these are induced paths rather than just paths. There are several
constructions that work. You may also try to create two vertices for every literal in every clause instead
of just one.

Proof: We will reduce the problem A ... to the problem B ...

Given an instance Φ of the problem A we construct an instance Ψ of the problem B

as follows ...

20



SID:

The proof that this is a valid reduction is as follows:

We will reduce from 3SAT to Induced Path. Given a 3SAT formula Ψ, we create an instance (G =
(V,E), k) of Induced Path as follows. Suppose that the clauses of Ψ are C1, . . . , Cm. Let k = 2m. For
each clause Ci, create two vertices for each literal in Ci, and create a complete graph between them
(i.e. there are edges for every two of the vertices). Now, similar to the construction for Independent
Set, we join every pair of vertices that correspond to literals that are negation of each other. Finally,
for every i = 1, . . . ,m − 1, we connect the second copy of each literal in Ci to the first copy of each
literal in Ci+1.

Clearly, this reduction runs in polynomial time. Moreover, we can argue its correctness as follows.

• Suppose that there exists an assignment that satisfies Ψ. Let bi be a literal that is set to true in
the clause Ci. Then, the following is an induced path of length k = 2m in graph G: the first copy
of b1, the second copy of b1, the first copy of b2, the second copy of b2, . . . , the first copy of bm,
and the second copy of bm.

• Suppose that there exists an induced path v1 . . . v2m in the graph G. First, notice that there can
be no three vertices from the same clause; otherwise, they would induce a triangle which cannot
appear in an induced path. Hence, exactly two vertices of v1, . . . , v2m come from each clause Ci.
Notice that vertices of the same clauses are linked by an edge, meaning that the two vertices from
the same clauses must appear consecutively in the induced path. This implies that v1, v2 are from
the same clause, v3, v4 are from the same clause, ..., and v2m−1, v2m are from the same clause.
Hence, if we consider v1, v3, . . . , v2m−1, then this is an independent set with exactly one vertex
from each clause. Due to a similar argument we used in the reduction from 3SAT to Independent
Set, this can be converted in polynomial time to a satisfying assignment for the 3SAT formula Ψ.

21



8 APPROXIMATION: MAXIMUM COVERAGE (22 POINTS)

8 Approximation: Maximum Coverage (22 points)

The Maximum Coverage Problem is an optimization problem defined as follows.
Input: Subsets S1, . . . , Sm of a set U , and a positive integer k ≤ m.
Output: Find T ⊆ {1, . . . ,m} of size k such that the size of

⋃
i∈T Si is maximized. (I.e., find k subsets whose

union has maximum size.) We say that the elements in this union are covered by the subsets.

1. (6 points) Briefly argue that, if we can solve the Maximum Coverage problem optimally, then we can
also solve the Set Cover problem. (Note: this implies that Maximum Coverage is NP-hard.)

If we can solve Maximum Coverage, then we can run the algorithm (on the same input for the Set
Cover problem) and check if the output subsets cover every element. If they do, then these k subsets
are a solution for Set Cover. Otherwise, we know that there is no solution of size k for Set Cover.

2. Let us examine the greedy algorithm which proceeds in k steps as follows: In each step, pick the subset
that covers the maximum number of (currently) uncovered elements.

(a) (4 points) Give a counterexample for which the greedy algorithm does not give an optimal solution.

22



SID:

Consider the case where there are three subsets S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {2, 3, 4, 5} and
k = 2. Greedy would pick S3 in the first iteration, at which point no matter which other set is
picked the union is not the whole set {1, 2, 3, 4, 5, 6}.

(b) (6 points) Show that, when k = 2, this algorithm is a 3/4-approximation algorithm for the problem
(i.e. the two sets picked by the algorithm covers 3/4 as many elements as the optimal solution).
Hint: It may be helpful to look at the hint from part (c).

Let OPT denote the total number of elements covered by the optimal solution and let x denote
the number of elements covered by the first subset in the greedy solution. Since OPT elements
can be covered by two subsets, the first subset picked by the greedy algorithm must cover at least
OPT/2 elements, i.e., x ≥ OPT/2.

Let us now examine the second subset picked by the greedy algorithm. Since at least OPT − x
elements covered by the optimal solution are uncovered by the first subset picked by the greedy
algorithm, the second subset picked must cover at least (OPT − x)/2 uncovered elements.

23



8 APPROXIMATION: MAXIMUM COVERAGE (22 POINTS)

In conclusion, the greedy algorithm covers at least x + (OPT − x)/2 = OPT/2 + x/2 ≥ 3OPT/4
elements.

(c) (6 points) Generalize the analysis above to show that, for every k, the greedy algorithm is an(
1− (1− 1/k)k

)
-approximation algorithm for Maximum Coverage.

Hint: Let xi denote the number of elements covered by the greedy solution after picking i subsets.
Try to show that xi+1 − xi ≥ (OPT − xi)/k where OPT is the total number of elements covered
by the optimal solution. You might find it useful to consider the quantity yi = OPT − xi as well.

Let xi be as defined as in the hint. After the i-th subset is picked by the greedy algorithm, at
least OPT − xi elements covered by the optimal solution have not been covered by the greedy
solution. Since these elements are covered in the optimal solution (which uses k subsets), there
must be one subset that covers at least (OPT − xi)/k such elements. Hence, the greedily picked
subset also covers at least (OPT − xi)/k additional elements. In other words, we have that
xi+1 ≥ xi + (OPT − xi)/k.

Let yi = OPT −xi. The above inequality can be written as yi(1− 1/k) ≥ yi+1. This implies that
yk ≤ y0(1− 1/k)k = OPT (1− 1/k)k, which implies that xk ≥ OPT (1− (1− 1/k)k). As a result,
the greedy algorithm is an (1− (1− 1/k)k)-approximation algorithm for Maximum Coverage.

24


