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1 Maximum Flow (6 points)

Consider the following directed graph with all edge capacities equal to 1.

In the first step of Maximum-Flow algorithm, we increase the flow along S -+ A -+ D —- B - F — T by
one unit.

1. Draw the residual graph after this step.




2. What happens next in the execution of Max-Flow algorithm? (the algorithm does not necessarily run

for three steps)

e Send |1

unit(s) of flow on path S —

S,C,F,B,D,T also works

e Send

e Send

B — D

unit(s) of flow on path S —

unit(s) of flow on path S —

3. What is the minimum S — T cut in the graph?

e S-side of the partition = {S,|S,C, F, B

e T-side of the partition = {T,| A, D, E,T

A can be on either side of the cut



2 Minimum Spanning Tree (6 points)

Consider the following graph, and the list of edges in increasing order of their weights.

1. (A, B)

2. (B,0)

3. (C,D

® O © | on
5. (B,D)

6. (A,J)

7. (F,J)

© ® \D> 8. (D, E)
9. (E,G)

10. (D, H)

11. (G, J)

@ @ @ 12. (G, H)
13. (B, J)

14. (F,G)

Run Kruskal’s algorithm and Prim’s algorithm (starting at node E for the latter). Which are the second,
fourth, and seventh edges that are added to the resultant MSTs, in each of the two algorithms?

Kruskal’s Algorithm | Prim’s Algorithm
Step 2 (B,C) (AB)
Step 4 (B.,E) (C,D)
Step 7 (E,G) (E,G)




3 Vertex Cover (6 points)

Suppose 1 = %71'2 = %,1‘3 = %,14 = %,x5 = i,xﬁ = %,m7 = % be the optimal solution to the linear

programming relaxation of vertex cover on a graph G (all vertex weights are 1).

1. Choose the pairs of vertices that are NOT edges in the graph. Bubble in your answers. [Note: This
part will be graded automatically. Please mark your answer clearly.]

O (1.2)

(4,5). In LP formulation of the vertex cover, we need to make sure for each two vertices ¢ and j,
x; +x; > 1. So if we check this constraint to all edges above, (4, 5) is the only one that the LP
solutions do not satisfy.

2. The size of the smallest vertex cover in G is at least |4

4. LP solution should be the lower bound of the optimal solution. If we sum of all x;, it sums up to
3%. Therefore the x vertex cover is 4.

3. Choose the vertices that belong to the vertex cover output by the approximation algorithm. Bubble
in your answers. [Note: This part will be graded automatically. Please mark your answer clearly.]

O1
O2
O3
O4
O5b
O6
Or

Approximation algorithm says that you need to choose all the vertices that have value greater than
1/2. In this case, they are x1, 3, x4, .

4. The algorithm yields a |1 approximation on this graph.

From part b and c, we see the algorithm we have, gives answer of 4 vertices, and the optimal solution
is at least 4 vertices. In this case, we get the optimal solution. It is 1-approximation on the graph.



4 Zero-Sum Games (3 points)

Consider a zero-sum game given by the following matrix (indicating the payoffs to the row player)

Ciy | Cy | Cs
R |1 2 3
Ry | 2 2 1
Rs | 1 4 2

Suppose the column player goes second and has fixed the following probabilistic strategy:

Cy | Cy | Cy
03102105

what is the best strategy for the row player going first?

Ry Ry R3

1.0 0.0 0.0

The value the row player gains from choosing R; is 2.2, from Ry is 1.5, and R3 is 2.1, so the row player
should choose R; always.



5 Linear Programming (6 points)

1. Write the dual of the following linear program.

max 3xq + xo + 43 + 44 + 25
1+ To+ a3+ x4 +25 <2
r1 —To+2x3+3r4 <1

T1,%2,T3, 24,25 > 0

The dual is as follows:

min 2y + ys

y1+y2=>3

y1—y2>1

y1+2y2 > 4 (2)
Y1+ 3y2 > 4

y1 =1

y1,92 > 0

2. Prove that the optimum of the linear program given in part 1 is at most 5.

We note that if we set y; = 2 and y» = 1, we satisfy all the constraints of the dual linear program, and
its objective attains a value of 2(2) + (1) = 5. Thus, the optimal (minimum) value of the dual program
is at most 5. Because the optimal (maximum) value of the primal can be at most the minimum of the
dual, it must also be at most 5.



6 Factoring Numbers via Circuit SAT (5 points)

Let n =10100010101000101011111100000101010101111111111111111110000000001110000000111.

Describe a circuit C' (in at most two sentences), such that solving the CircuitSAT problem on the instance
C will yield a factor p dividing n.

To check if p is a factor of n, we simply need to check if (integer division/multiplication) n/p * p == n. We
can create a circuit that implements the division and multiplication, with n hardwired to be the number
provided. Both division and multiplication are polynomial in the bits of n: there can only be as many
operations as there are bits in n. Then n/p*p and n are fed into the final gate, an equal/XNOR gate, which
outputs a 1 if p is a factor of n. The inputs to the circuit are the bits in p. Solving this CircuitSAT problem
is equivalent to the question ”What input would cause this circuit to output 17”, which would find the factor

p-

This problem shows why CircuitSAT is NP-complete. Factoring is an incredibly hard problem in CS (and
the backbone of many encryption schemas), and CircuitSAT can solve it along with any problem with a
polynomial time verifier. You can build a polynomial size circuit to do any polynomial time algorithm, so if
you solve CircuitSAT then you can solve any problem in NP.



7 Find the satisfying one (5 points)

You are given a 3-SAT formula ¢ and two assignment sets x1, z2 such that one of the assignment sets satisfies
®, while the other satisfies at most 90% of the clauses in ®.

Describe an O(1)-time algorithm that finds the satisfying assignment among x1, zo with probability 0.99.
Main Idea:

We randomly choose one assignment set. Then randomly pick k clauses and test on the assignment set. If
any clause doesn’t satisfy, we pick the other assignment set. Otherwise, if all clauses are satisfied, we pick
this set.

Prove:
We set our k in the following way:

1. You can also use Chernoff bound to approach this problem. Set the error to be 0.1 and the probability

1
bounded by 0.01. k = [2 L log, 5 oﬂ

2. Asymptotically, we have infinite number of clauses. Therefore, since we just try a little portion of
the clauses, we can assume that in the wrong assignments set, each clauses is satisfied with probability
P(One clause satisfied|Wrong set) < 0.9

If we randomly pick k clauses from one set and check if all the k clauses are satisfied. Then:
P(k clauses all satisfied|Wrong set) = P(One clause satisfied| Wrong set)* < 0.9%

P(Correct set|k clauses all satisfied)
1
— % P(Correct set|k clauses all satisfied)

_ 2
1 1
3 * P(Correct set|k clauses all satisfied) 4 5 * P(Wrong set|k clauses all satisfied)
_ 1
C 1409k
In the boundary case, we set the P(Correct set|k clauses all satisfied) to 0.99.
1
— =0.99
14 0.9%
k= [logg o(—— — 1)] = 44
[ 0go.9(0_09 )]



8 Updating Distances (8 points)

We have a directed graph G = (V, E), where each edge (u, v) has a length ¢(u,v) that is a positive integer.
Let n denote the number of vertices in G. In other words, n = ||[V||. Suppose we have previously computed
a n x n matrix d[-,-], where for each pair of vertices (u,v) € V, d[u,v] stores the length of the shortest
path from u to v in G. The d[, ] matrix is provided to you. Now we add a single edge (a,b) to get the
graph G' = (V; E'), where E = EU{(a,b)}. Let £(a,b) denote the the length of the new edge. Your job
is to compute a new distance matrix d'[-, -], which should be filled in so that d'[u, v] holds the length of the
shortest path from u to v in G’, for each u,v € V.

1. Write a concise and efficient algorithm to fill in the d'[-,-] matrix. You should not need more than
about 3 lines of pseudocode. (psuedocode only)

fori=1,...,n:
forj=1,...,n:
d'[i, j] = min(d[i, j], d[i, a] + l(a,b) + d[b, j])

2. What is the run-time of your algorithm?
Run-time of the algorithm is O(n?)

10



9 Finding Bridges (20 points)

A bridge of an undirected graph G is an edge whose removal disconnects G.

1. An edge is a bridge if and only if it is not part of any | Cycle

2. Suppose we perform a DFS of the graph G then a bridge can be (bubble all possibilities): [Note: This
part will be graded automatically. Please mark your answer clearly.]

(O Tree edge
(O Back edge
Tree edge.

3. Suppose we perform a DFS of the graph G starting from s. At some point during the execution of the
DFS, let us suppose the current node is v;. Suppose the path from the root of DFS tree to the current
node v; is given by,

S=Vyg —> V1 —V2... > Vp_1 — Ut

and the DFS encounters a back edge v; — v; for some ¢ < . Which edges of the graph are definitely
not bridges?

All edges in the cycle: (v; = viy1),. .., (vi—1 — vp).

4. Use the hints above to design an O(]E|) time modification of DFS to find all the bridges in an undirected
graph G. For simplicity, let us assume that assume that G is connected.

Briefly state your main idea and fill in the blanks in the following pseudocode. You don’t need to use
all the lines that we provide.

Main Idea:

We know an edge is not a bridge if it is part of a cycle; we keep track of this in the boolean array
isBridge. In our DFS traversal, once we encounter a back-edge (u,v), we know it cannot be a bridge.
We also need to propagate this information back to the other earlier edges in the cycle.

Staff Solution: We check the direct ancestor of v with this information in postvisit(u). If a node is part
of a cycle, it is either the head of the cycle or its direct ancestor is part of the cycle (depth[earliest|[v]] <
depth[u]). We do this by keeping track of the ”earliest” node in the cycle containing the current node
u. We also update the ancestor v with information about the earliest node in the cycle (earliest]u]).

There are other possible solutions that handle the cycle edges through chains of treeEdge]] calls directly
instead of using recursive postvisit() calls, but many did not fit the O(|E|) time requirement.

Common mistakes included mistakes with setting isBridge[] to True for edges in the cycle or forgetting
to set isBridge[] to True for edges not in cycles, mistaking the ordering of explore() and postvisit()
calls, not taking the minimum of depths when updating earliest[] values for edges in the cycle, and
updating all neighboring edges’ earliest[] values in postvisit() rather than just the ancestor’s.

11



Pseudocode:

Let
depth[u] = depth of node u in DFS tree
depth = current depth of DFS
visited[u] = boolean indicating whether visited u already

isBridge[u,v] = True if (u,v) is a bridge in the graph, and initialized to False for every edge at the beginning
earliest[u] = Earliest ancestor that is part of some cycle with u, initialized to u.
]

treeEdgelu] = Tree edge leading to u
procedure EXPLORE(u):

for each edge(u,v) € E do
if visited[v] = True then

# (isBridge[u,v] = False)
if depth[v] < depth[earliest[u]] then
earliest[u] = v
end if
else
treeEdge[v] = (u,v)
Previsit(v)
Explore(v)
Postvisit(v)
end if
end for
end procedure

procedure PREVISIT(u):

depth = depth + 1
depth[u] = depth
visited[u] = True
end procedure

procedure POSTVISIT(u):

depth = depth — 1
# Look only at tree edge from node u to direct ancestor w
(u, w) = treeEdge[u]
# Check if w is part of some cycle with u (isBridgefu,w] = False)
if depth[earliest[u]] < depth|[w] then
# Update ’earliest’ entry for w if u has an earlier ancestor, check is necessary in case of multiple
cycles
if depth[earliest[u]] < depth[earliest[w]] then
earliest[w] = earliest[u]
end if
else
isBridge[u,w] = True

12



end if
end procedure

13



10 Gambling (15 points)

You walk into a casino. You have M dollars of money, and want to play exactly n rounds of games. Let us
call it a success if at the end of the n games, you have exactly 2M dollars (no more, and no less).

For each of the n rounds, you can choose to play either Game A or Game B. Game A costs $1 to play,
and returns $2 with probability 0.6 (and $0 with probability 0.4). Game B costs $3 and returns $15 with
probability 0.2 (and $0 with probability 0.8).

(The returns do not include the cost, so if you play and win Game A, your net gain is $1.)

We will now design a dynamic programming algorithm to compute the probability of success of the optimal
strategy.

Define the subproblem as the following:

T'[m, ] = Optimal strategy’s probability of success, if you have m dollars at the end of ¢ games

1. Base cases:
(Note: A lonely m or a ¢ represents this can be any value)

Condition for success:

Tim=2M,{=n]=1
Playing n games, but not having exactly $2M at the end:
Tim#2M,{=n]=0

Having zero money at any point means you can’t play any more games (assum M is positive):

The following was not required for full points, but good to have:

Tim< M —3n,¢]=0

(the above is the case where you lost as much money as possible, and is helpful for bounding the
runtime)

Playing more than n games is not okay:

Tim,t>n]=0

You can only win so much money (also helpful in bounding the runtime):

T[m > M +12n,0] =0

2. Recurrence relation:

If m < 3, we can only play game A, so we have:
Tm, 0] =0.6-Tm+1,£+1]+04-Tm—1,0+1]

14



(some answers put the above in the base case section, which is OK)
Otherwise,
T[m,f] =max{0.6 - Tm+1,0+1]4+04-Tm—-1,0+1],02-Tim+12,£+ 1]+ 0.8 - T[m — 3,{ + 1]}

Having an optimal strategy means you always take the option that has a higher chance of giving you
success. For either option, we can compute the probability of success in terms of two possible outcomes.

. The run-time of the algorithm is ©(| min {15n, M + 12n} - n )

How many subproblems are there? We need to see how many possible configurations of (m,¢) there
can be.

First, ¢ can range from 0 to n, so this contributes an n multiplicative factor. Answers using ¢ instead
of n were also accepted.

Now consider money. The greatest amount of money possible is if we win Game B n times: M + 12n.
The least amount of money possible is either:

(a) M — 3n. We lost Game B n times.

(b) 0. We lost money until we cannot play anymore.
So the number of configurations for money is min {case (a), case (b)} = min {15n, M + 12n}.
Putting these two together, this is:

O(min {15n, M + 12n} - n)

We don’t know if M or n dominates, so this doesn’t simplify further. Answers along these lines were
accepted:

- O(15n2).
- O((M + 12n)n)

©(Mn) is not exactly correct, because this implies there were 2M possible values for money, and not
on the order of n or M +n. For example, suppose if someone has 2M +n dollars, and then loses Game
B % times to end up with 2M at the end.

15



11 Roadside Assistance (20 points)

You are the CEO of a towing company that serves a network of roads connecting n cities. The road network
is given by an undirected graph G = (V, E) where V = {1,...,n} is the set of cities, and F denotes the set
of roads connecting pairs of cities in V.

On each road (7,j) € E, there are w;; accidents that occur each day, which need road-side assistance. An
accident occuring on road (i,7) can only be serviced by a tow-truck from city ¢ or city j. Each accident
needs exactly one tow-truck for assistance.

At each city 4, the company parks ¢; tow-trucks.

1. (10 points) Describe a polynomial-time algorithm to determine whether the company can service all the
accidents. If so, determine how the company should service the accidents, i.e., For each road (i, j) € E,
the algorithm must determine how many of the w;; accidents on the road are assisted by trucks from
1, and how many by trucks from ;57

Describe the main idea of the algorithm precisely, proof of correctness is not needed.

We will reduce this problem to max flow.

e Create a new graph G’ = (V' E’). We will first add all vertices vy from V to V.
e Add source vertex s and sink vertex t.
e For each edge (i,7) € E, we create new vertices z;; and add it to V',

e For each vertex x;; € V', we add directed edges (v;, x;;) and (vj,x;;) to B’ with capacities ¢; and
t; respectively. We can service at most ¢; accidents from city ¢ for road (4, j), and so forth.

e There will also be a directed edge to the sink (x;;,t) with capacity w;;. This allows us to service
all accidents for road (3, j).

e For all original vertices vy, € V', we add directed edges from the source (s, vx) with capacity ¢ to
E’. This will ensure that we cannot service more than ¢; accidents from city 7.

e Run max flow on new graph G' = (V' E’).
If the incoming edges to t are fully saturated, then there is a feasible solution to our roadside assistance

problem. We can look at the flow values of individual edges (v, 2;;) to determine how many trucks
we service from city k for road (i, k).

2. (10 points) The company realized that it is paying too much parking fees for the trucks at the cities.
Parking a truck in city ¢ costs c;.

The company would like to rearrange all the trucks, so as to minimize the total parking costs, while
still being able to assist all the accidents on every road.

Write a linear program to determine how to rearrange the trucks, so that they can still assist all the
w;; accidents on each road (4, j), but minimize the total parking cost.
(a) What are the variables of the linear program?
o Let x;; be the number of trucks parked at city ¢ that will service the road (4, j).

e Let p; be the number of trucks parked at city 3.

(b) What is the objective function?
We want to minimize total parking costs.

min E C; E Lij

i€V (i,j)EE

16



(c) What are the constraints?

D D @

i€V (i,j)EE
VieV, Yy
(i,9)eE
V(i,j) € E i + xj;
VieV p;
VieV,(i,j) € E

xij

Alternate Solution

Subject to

Zpi
eV
YieV, Z Tij
(i,J)eEE
V(Z,]) ekl Tij +.’Eji
VieV p;
VieV,(i,j) € E x4

= Z t; Total number of trucks

eV

= Dij

2 Wij

only cars parked at ¢ can service the edges

all accidents on edge (i, j) are serviced

>0 Nonnegativity

>0 Nonnegativity

min

> eps

eV

= Z t; Total number of trucks

eV

< pij

> wij

only cars parked at ¢ can service the edges

all accidents on edge (i, j) are serviced

>0 Nonnegativity

>0 Nonnegativity

17



12

Complete the sentences: (26 points)

When asked for a bound, always give the tightest bound possible.

10.

11.

12.

13.

. The number of strongly connected components in an n vertex DAG is at least | n

Suppose E[i, j] is the ij" entry of the table in the dynamic programming based algorithm for edit dis-

tance, then E[5,6] can be computed using the entries: | E[4,6], E[4,5], E[5,5]

Every directed graph can be decomposed in to a| DAG of strongly connected components

. The solution to the recurrence T'(n) = 8T'(n/4)+0(n?)is| T'(n) = O(n?)

Suppose T'(2") = T(n) 4+ 1 and T(1) = 1 then T'(n) =| O(log*(n))

Cross edges occur in the DFS tree only if the graph is directed.

Running DFS starting from a node in a | sink SCC yields

a strongly connected component of the graph.

Minimum spanning tree of a graph never contains the heaviest edge in every | cycle

Minimum spanning tree of a graph always contains the lightest edge in every | cut

Suppose a hash function h : {0,1,...,p — 1} — {0,1,...,p — 1} chosen from a universal hash family

then Pr[h(2) =2-h(1) mod p] =|1/p

There are 8 symbols {A, B,C, D, E, F,G, H} all of whose frequencies are within the range
[% — 1073, % +1073]. The Huffman encoding of these symbols will consist of strings

{000,001, 010,011, 100, 101, 110, 111}

in some order.

The cost of every TSP tour in a graph is always | greater than the cost of a minimum

spanning tree. (positive weights, complete graph)

Two polynomials p(z), ¢(z) given in the (point,value) representation can be multiplied in time

O(n) . (both are degree at most n)

18



13 True or false? (12 points)

Bubble in the right answer. No explanation needed. No points will be sub-
tracted for wrong answers, so guess all you want! This part will be graded
automatically. Please mark your answer clearly.

1. Dijkstra’s algorithm does not work on every DAG with negative edge weights.

O True

(O False

True, consider a DAG on 4 nodes with diamond shape with weights {1,1} along one path and weights
{2, —2} along the other, from source to target.

2. On a graph with integer capacities, the size of the minimum cut is integral.

(O True

(O False

True, recall that the value of the max flow of a graph with integer capacities must be integral.

3. On a graph with only integer capacities, the total maximum flow between any chosen pair s,¢ can be
non-integral.

(O True

(O False

False, it will always be an integer, as in the previous question.

4. If a linear program has an integral optimal value then it has a unique solution.

O True

Q False

False, consider for example max0: —1 <z < 1.

5. The set of all functions from {0,1,...,p — 1} to {0,1,...,p — 1} is a universal hash family.

(O True

(O False
True.

6. MINIMUM VERTEX COVER is polynomial-time solvable on a tree.

(O True
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10.

11.

12.

Q False

True, a dynamic programming algorithm for this task was covered in section.

Doubling the capacities of all edges of a minimum cut in a graph G, doubles the maximum flow.

O True

Q False

False, the second-best minimum cut may have value less than double the max flow.

Simplex algorithm can be used to solve linear programs in polynomial time.

O True

Q False

False, simplex is an exponential time algorithm.

The number of sub-problems in computing edit distance between two strings z[1...m] and y[1...n] is
O(mn).

(O True

(O False

True, recall we define Efi,j] fori=1...m,j=1...n.

The value of the edit distance between two strings z[1,...,m] and y[1,...,n] can be computed using
O(m + n)-space.

(O True

(O False

True, it is possible to compute edit distance only tracking entries along the preceding diagonal.

For any proof, if a cheating verifier cannot recover the prover’s secret witness from an interactive proof
then the proof is zero-knowledge.

(O True

(O False

False! The converse of the statement is true but this statement is false. In particular, the requirement
for a proof to be zero-knowledge is stronger — namely, the cheating verifier learns nothing about the
prover’s secret (e.g. even the first bit of the prover’s secret remains hidden from the verifier).

MiNIMUM VERTEX COVER is known to be an NP problem.
(O True

(O False

False, there is no way to efficiently check if a vertex cover is the smallest one.

20



13.

14.

15.

16.

14 True or False or Maybe..? (12 points)

In the remaining questions there are four possible answers: (1) True (T);
(2) False (F); (3) True if and only if P = NP (=); (3) True if and only
if P # NP (#).

Bubble in the most appropriate one. Note: By “reduction” in this exam

it 18 always meant “polynomial-time reduction.”
This part will be graded automatically. Please mark your answer clearly.

There is a reduction from BIPARTITE MATCHING to INDEPENDENT SET.

O True
(O False
Q =

O#
T

There is a reduction from INDEPENDENT SET to MAXIMUM FLOW.
(O True

(O False
Q =
O#

There is a polynomial-time algorithm for 3-SAT.

O True
O False
O=
O #

There is a reduction from FACTORING to RUDRATA PATH.

(O True

(O False

21



17.

18.

O=

O#
T

Every problem in NP can be written as an integer linear program.

O True
(O False
O =

O#
T

MINIMUM SPANNING TREE is an NP problem.

(O True
(O False
O p—

O#
T

22



15 NP-completeness (20 points)

Note: By “reduction” in this exam it is always meant “polynomial-time reduction.” For the reductions in
Problem ?? mention the problem you are using, direction and construction of the reduction). Also, when
you are asked to show that a problem is NP-complete, no need to show that it is in NP, unless asked to do
SO.

You may assume that the following problems are known to be NP-hard.

e Rudrata Path or Hamiltonian Path
e Hamiltonian Cycle

e Vertex Cover

e Independent Set

e 3-SAT

e CircuitSAT

e Integer Programming

e Clique

e 3D-Matching

e 4-SAT

e 3-Coloring
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(8 points) 1) Balanced 3SAT: In the balanced 3-SAT formula, the input is a 3-SAT formula and the goal is

to find a satisfying assignment x = (x1,...,x,) such that exactly half the variables are assigned 0, and half
assigned 1.

Proof: We will reduce the problem ... to the problem ...

Given an instance ® of the problem ... we construct an instance W of the problem ...

as follows ...

The proof that this is a valid reduction is as follows:

We will reduce the problem 3SAT to the problem Balanced-3SAT
Given an instance ® of the problem 3SAT, we construct an instance W of the problem Balanced-3SAT
as follows:

For each clause x; V x; V 3, is ®, we put it and add an additional clause 7; V @ V @3, in W. z; are original
variables in @ and y; are new variables that we introduce to ®. Intuitively, y; is the negation of corresponding
ZTi.

The proof that this is a valid reduction is as follows:

In the reduction above, we double the total amount of variables from {x;,..., zr} to {z;, ..., Tk, Vi, -, Yk }-
In addition, we double the amount of total clauses from n clauses to 2n. We want to show that if ¥ is
exactly the same as ®. In our configuration, if z; is TRUE, then y; must be FALSE as y; is constructed

as the negation of z;. Therefore, the solution to ® is always balanced with TRUE and FALSE. Since y; is
totally dependent on x;, the solutions to W is exactly the same as ®.

24



(6 points) 2) Degree-Bounded Spanning Tree: Given a graph G and integers (b1, ...,b,), find a spanning
tree T for the graph such that the degree of the i*" vertex in the tree is at most b;.

Proof: We will reduce the problem ... to the problem ...
Given an instance ® of the problem ... we construct an instance U of the problem ...
as follows ...

Terse but acceptable version:

We will reduce the problem Hamiltonian/Rudrata Path to the problem Degree-Bounded Spanning Tree
(DBST). Given an instance of the problem Hamiltonian Path, G, we construct an instance of the problem
DBST as follows: G,b; = 2, Vi.

Solution with more explanation:

We will reduce Hamiltonian/Rudrata Path to Degree-Bounded Spanning Tree (DBST). Given an instance
of Hamiltonian Path, we have a graph G = (V, E) and wish to find a path that visits every vertex exactly
once (we don’t need to end on the starting vertex). Construct an instance to DBST as follows: use the same
graph from the Hamiltonian Path problem, G, and let b; = 2,Vi (we can also optionally further constrain
by =1 and/or b, = 1). Then we feed this into our black-box DBST solver. If there was no solution, output
no solution. If there was a solution, we get a spanning tree with degree 2 or less everywhere. But if every
vertex of the spanning tree has degree 2 or less, this means the entire spanning tree must be one long path
with no branches (or if it wasn’t a snake-like line, one vertex would have degree of at least 3). So the output
of DBST is the solution to the Hamiltonian Path problem.

The proof that this is a valid reduction is as follows:

If there is a Hamiltonian path in the graph, then this path is a spanning tree where each degree is at most
2. So it must be the case that DBST has a possible spanning tree where each degree is at most 2.

If there is a spanning tree where each degree is at most 2, then this implies there is a Hamiltonian path.
Because it is spanning, it includes all vertices, and because it is a tree, it is acyclic (so this is not a cycle). If
every degree is at most 2, this forces the only possible spanning tree to be a path that visits all the vertices
exactly once. This is a Hamiltonian path. So if there is such a spanning tree, there is a Hamiltonian Path.
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(6 points) 3) Disjoint Sets: Given a collection of subsets S = {S1,...,Sn} of {1,...,n} and an integer k,
pick k of these subsets {S;,,...,S;, } that are pairwise disjoint, i.e., S;, NS;, = 0 for all a # b.

Proof: We will reduce the problem ... Independent Set to the problem ... Disjoint Set

Given an instance ® of the problem ... Independent Set we construct an instance ¥ of
the problem ... Disjoint Set

as follows ...

® = G(V, E). Create subsets S; for all vertices i € V. The contents of the subsets will the vertex j V(i,j) €
E. Subsets will contain adjacent vertices. If all elements are pairwise disjoint, then there are no edges between
any no vertices and therefore no edges between all vertices. We set integer k to be the target size g of the
independent set.

Proof of correctness of reduction not necessary ]
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