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Final

Name:

SID:

Exam Room:

Name of student to your left:

Name of student to your right:

Do not turn this page until your instructor tells you to do so.

• After the exam starts, write your name on every odd-numbered page. We reserve the right to deduct
points if you do not, and you will not be allowed to do so after time is called.

• For short question, your answers must be written clearly inside the box region. Any answer outside
the box will not be graded. For longer questions, if you run out of space, you must clearly mention in
the space provided for the question if part of your answers is elsewhere.

• The number of points roughly indicate the amount of time (in minutes) worth spending on each
problem. Try to answer all questions. Not all parts of a problem are weighted equally. Before you
answer any question, read the problem carefully. Be precise and concise in your answers.

• You may consult only three sheets of notes. Apart from that, you may not look at books, notes, etc.
Calculators, phones, computers, and other electronic devices are NOT permitted.

• There are 26 pages on the exam (counting this one). Notify a proctor immediately if a page is missing.

• By “reduction” in this exam it is always meant “polynomial-time reduction.” Also, when
you are asked to prove that a problem is NP-complete, no need to show that it is in NP,
unless asked to do so.

• You have 170 minutes: there are 15 questions on this exam worth a total of 170 points.
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1 Maximum Flow (6 points)

Consider the following directed graph with all edge capacities equal to 1.
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In the first step of Maximum-Flow algorithm, we increase the flow along S → A → D → B → F → T by
one unit.

1. Draw the residual graph after this step.
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2. What happens next in the execution of Max-Flow algorithm? (the algorithm does not necessarily run
for three steps)

• Send unit(s) of flow on path S → → T

• Send unit(s) of flow on path S → → T

• Send unit(s) of flow on path S → → T

3. What is the minimum S − T cut in the graph?

• S-side of the partition = {S, }

• T -side of the partition = {T, }
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2 Minimum Spanning Tree (6 points)

Consider the following graph, and the list of edges in increasing order of their weights.

A B C

J E D

F G H

1. (A,B)

2. (B,C)

3. (C,D)

4. (B,E)

5. (B,D)

6. (A, J)

7. (F, J)

8. (D,E)

9. (E,G)

10. (D,H)

11. (G, J)

12. (G,H)

13. (E, J)

14. (F,G)

Run Kruskal’s algorithm and Prim’s algorithm (starting at node E for the latter). Which are the second,
fourth, and seventh edges that are added to the resultant MSTs, in each of the two algorithms?

Kruskal’s Algorithm Prim’s Algorithm
Step 2

Step 4

Step 7
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3 Vertex Cover (6 points)

Suppose x1 = 3
4 , x2 = 1

3 , x3 = 2
3 , x4 = 2

3 , x5 = 1
4 , x6 = 2

3 , x7 = 1
3 be the optimal solution to the linear

programming relaxation of vertex cover on a graph G (all vertex weights are 1).

1. Choose the pairs of vertices that are NOT edges in the graph. Bubble in your answers. [Note: This
part will be graded automatically. Please mark your answer clearly.]

(1,2)

(2,3)

(2,4)

(4,5)

(3,6)

(6,7)

2. The size of the smallest vertex cover in G is at least

3. Choose the vertices that belong to the vertex cover output by the approximation algorithm. Bubble
in your answers. [Note: This part will be graded automatically. Please mark your answer clearly.]

1

2

3

4

5

6

7

4. The algorithm yields a approximation on this graph.
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4 Zero-Sum Games (3 points)

Consider a zero-sum game given by the following matrix (indicating the payoffs to the row player)

C1 C2 C3

R1 1 2 3
R2 2 2 1
R3 1 4 2

Suppose the column player goes second and has fixed the following probabilistic strategy:

C1 C2 C3

0.3 0.2 0.5

what is the best strategy for the row player going first?

R1 R2 R3
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5 Linear Programming (6 points)

1. Write the dual of the following linear program.

max 3x1 + x2 + 4x3 + 4x4 + x5

x1 + x2 + x3 + x4 + x5 ≤ 2

x1 − x2 + 2x3 + 3x4 ≤ 1

x1, x2, x3, x4, x5 ≥ 0

(1)

2. Prove that the optimum of the linear program given in part 1 is at most 5.
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6 Factoring Numbers via Circuit SAT (5 points)

Let n = 10100010101000101011111100000101010101111111111111111110000000001110000000111.

Describe a circuit C (in at most two sentences), such that solving the CircuitSAT problem on the instance
C will yield a factor p dividing n.
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7 Find the satisfying one (5 points)

You are given a 3-SAT formula Φ and two assignment sets x1, x2 such that one of the assignment sets satisfies
Φ, while the other satisfies at most 90% of the clauses in Φ.

Describe an O(1)-time algorithm that finds the satisfying assignment among x1, x2 with probability 0.99.

Main Idea:

Prove:
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8 Updating Distances (8 points)

We have a directed graph G = (V,E), where each edge (u, v) has a length `(u, v) that is a positive integer.
Let n denote the number of vertices in G. In other words, n = ‖V ‖. Suppose we have previously computed
a n × n matrix d[·, ·], where for each pair of vertices (u, v) ∈ V , d[u, v] stores the length of the shortest
path from u to v in G. The d[·, ·] matrix is provided to you. Now we add a single edge (a, b) to get the
graph G′ = (V ;E′), where E = E ∪ {(a, b)}. Let `(a, b) denote the the length of the new edge. Your job
is to compute a new distance matrix d′[·, ·], which should be filled in so that d′[u, v] holds the length of the
shortest path from u to v in G′, for each u, v ∈ V .

1. Write a concise and efficient algorithm to fill in the d′[·, ·] matrix. You should not need more than
about 3 lines of pseudocode. (psuedocode only)

2. What is the run-time of your algorithm?
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9 Finding Bridges (20 points)

A bridge of an undirected graph G is an edge whose removal disconnects G.

1. An edge is a bridge if and only if it is not part of any

2. Suppose we perform a DFS of the graph G then a bridge can be (bubble all possibilities): [Note: This
part will be graded automatically. Please mark your answer clearly.]

Tree edge

Back edge

3. Suppose we perform a DFS of the graph G starting from s. At some point during the execution of the
DFS, let us suppose the current node is vt. Suppose the path from the root of DFS tree to the current
node vt is given by,

s = v0 → v1 → v2 . . .→ vt−1 → vt

and the DFS encounters a back edge vt → vi for some i < t. Which edges of the graph are definitely
not bridges?

4. Use the hints above to design an O(|E|) time modification of DFS to find all the bridges in an undirected
graph G. For simplicity, let us assume that assume that G is connected.

Briefly state your main idea and fill in the blanks in the following pseudocode. You don’t need to use
all the lines that we provide.

Main Idea:
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Pseudocode:

Let

depth[u] = depth of node u in DFS tree

depth = current depth of DFS

visited[u] = boolean indicating whether visited u already

isBridge[u, v] = True if (u, v) is a bridge in the graph, and initialized to False for every edge at the beginning

earliest[u] =

treeEdge[u] = Tree edge leading to u

procedure Explore(u):

for each edge(u, v) ∈ E do

if visited[v] = True then

else
treeEdge[v] = (u,v)
Previsit(v)
Explore(v)
Postvisit(v)

end if
end for
end procedure

procedure Previsit(u):

depth = depth + 1
depth[u] = depth
visited[u] = True
end procedure

procedure Postvisit(u):

depth = depth− 1

end procedure
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10 Gambling (15 points)

You walk into a casino. You have M dollars of money, and want to play exactly n rounds of games. Let us
call it a success if at the end of the n games, you have exactly 2M dollars (no more, and no less).

For each of the n rounds, you can choose to play either Game A or Game B. Game A costs $1 to play,
and returns $2 with probability 0.6 (and $0 with probability 0.4). Game B costs $3 and returns $15 with
probability 0.2 (and $0 with probability 0.8).

(The returns do not include the cost, so if you play and win Game A, your net gain is $1.)

We will now design a dynamic programming algorithm to compute the probability of success of the optimal
strategy.

Define the subproblem as the following:

T [m, `] = Optimal strategy’s probability of success, if you have m dollars at the end of ` games

1. Base cases:

2. Recurrence relation:

3. The run-time of the algorithm is Θ( )
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11 Roadside Assistance (20 points)

You are the CEO of a towing company that serves a network of roads connecting n cities. The road network
is given by an undirected graph G = (V,E) where V = {1, . . . , n} is the set of cities, and E denotes the set
of roads connecting pairs of cities in V .

On each road (i, j) ∈ E, there are wij accidents that occur each day, which need road-side assistance. An
accident occuring on road (i, j) can only be serviced by a tow-truck from city i or city j. Each accident
needs exactly one tow-truck for assistance.

At each city i, the company parks ti tow-trucks.

1. (10 points) Describe a polynomial-time algorithm to determine whether the company can service all the
accidents. If so, determine how the company should service the accidents, i.e., For each road (i, j) ∈ E,
the algorithm must determine how many of the wij accidents on the road are assisted by trucks from
i, and how many by trucks from j?

Describe the main idea of the algorithm precisely, proof of correctness is not needed.

2. (10 points) The company realized that it is paying too much parking fees for the trucks at the cities.
Parking a truck in city i costs ci.

The company would like to rearrange all the trucks, so as to minimize the total parking costs, while
still being able to assist all the accidents on every road.

Write a linear program to determine how to rearrange the trucks, so that they can still assist all the
wij accidents on each road (i, j), but minimize the total parking cost.

(a) What are the variables of the linear program?

(b) What is the objective function?
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(c) What are the constraints?
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12 Complete the sentences: (26 points)

When asked for a bound, always give the tightest bound possible.

1. The number of strongly connected components in an n vertex DAG is at least .

2. Suppose E[i, j] is the ijth entry of the table in the dynamic programming based algorithm for edit

distance, then E[5, 6] can be computed using the entries:

3. Every directed graph can be decomposed in to a

4. The solution to the recurrence T (n) = 8T (n/4) + O(n2) is .

5. Suppose T (2n) = T (n) + 1 and T (1) = 1 then T (n) = .

6. edges occur in the DFS tree only if the graph is directed.

7. Running DFS starting from a node in a

yields a strongly connected component of the graph.

8. Minimum spanning tree of a graph never contains the heaviest edge in every

9. Minimum spanning tree of a graph always contains the lightest edge in every

10. Suppose a hash function h : {0, 1, . . . , p − 1} → {0, 1, . . . , p − 1} chosen from a universal hash family

then Pr[h(2) = 2 · h(1) mod p] =

11. There are 8 symbols {A,B,C,D,E, F,G,H} all of whose frequencies are within the range
[ 18 − 10−3, 1

8 + 10−3]. The Huffman encoding of these symbols will consist of strings

in some order.

12. The cost of every TSP tour in a graph is always than the cost of a minimum spanning

tree. (positive weights, complete graph)

13. Two polynomials p(x), q(x) given in the (point,value) representation can be multiplied in time

. (both are degree at most n)
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13 True or false? (12 points)

Bubble in the right answer. No explanation needed. No points will be sub-
tracted for wrong answers, so guess all you want! This part will be graded
automatically. Please mark your answer clearly.

1. Dijkstra’s algorithm does not work on every DAG with negative edge weights.

True

False

2. On a graph with integer capacities, the size of the minimum cut is integral.

True

False

3. On a graph with only integer capacities, the total maximum flow between any chosen pair s, t can be
non-integral.

True

False

4. If a linear program has an integral optimal value then it has a unique solution.

True

False

5. The set of all functions from {0, 1, . . . , p− 1} to {0, 1, . . . , p− 1} is a universal hash family.

True

False

6. Minimum Vertex Cover is polynomial-time solvable on a tree.

True

False

7. Doubling the capacities of all edges of a minimum cut in a graph G, doubles the maximum flow.

True

False
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8. Simplex algorithm can be used to solve linear programs in polynomial time.

True

False

9. The number of sub-problems in computing edit distance between two strings x[1 . . .m] and y[1 . . . n] is
O(mn).

True

False

10. The value of the edit distance between two strings x[1, . . . ,m] and y[1, . . . , n] can be computed using
O(m + n)-space.

True

False

11. For any proof, if a cheating verifier cannot recover the prover’s secret witness from an interactive proof
then the proof is zero-knowledge.

True

False

12. Minimum Vertex Cover is known to be an NP problem.

True

False
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14 True or False or Maybe..? (12 points)

In the remaining questions there are four possible answers: (1) True (T);
(2) False (F); (3) True if and only if P = NP (=); (3) True if and only
if P 6= NP (6=).

Bubble in the most appropriate one. Note: By “reduction” in this exam
it is always meant “polynomial-time reduction.”
This part will be graded automatically. Please mark your answer clearly.

13. There is a reduction from Bipartite Matching to Independent Set.

True

False

=

6=

14. There is a reduction from Independent Set to Maximum Flow.

True

False

=

6=

15. There is a polynomial-time algorithm for 3-SAT.

True

False

=

6=

16. There is a reduction from Factoring to Rudrata Path.

True

False

=

6=
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17. Every problem in NP can be written as an integer linear program.

True

False

=

6=

18. Minimum Spanning Tree is an NP problem.

True

False

=

6=
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15 NP-completeness (20 points)

Note: By “reduction” in this exam it is always meant “polynomial-time reduction.” For the reductions in
Problem ?? mention the problem you are using, direction and construction of the reduction). Also, when
you are asked to show that a problem is NP-complete, no need to show that it is in NP, unless asked to do
so.

You may assume that the following problems are known to be NP-hard.

• Rudrata Path or Hamiltonian Path

• Hamiltonian Cycle

• Vertex Cover

• Independent Set

• 3-SAT

• CircuitSAT

• Integer Programming

• Clique

• 3D-Matching

• 4-SAT

• 3-Coloring
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(8 points) 1) Balanced 3SAT: In the balanced 3-SAT formula, the input is a 3-SAT formula and the goal is
to find a satisfying assignment x = (x1, . . . , xn) such that exactly half the variables are assigned 0, and half
assigned 1.

Proof: We will reduce the problem ... to the problem ...

Given an instance Φ of the problem ... we construct an instance Ψ of the problem ...

as follows ...

The proof that this is a valid reduction is as follows:
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(6 points) 2) Degree-Bounded Spanning Tree: Given a graph G and integers (b1, . . . , bn), find a spanning
tree T for the graph such that the degree of the ith vertex in the tree is at most bi.

Proof: We will reduce the problem ... to the problem ...

Given an instance Φ of the problem ... we construct an instance Ψ of the problem ...

as follows ...

The proof that this is a valid reduction is as follows:

24



Name:

(6 points) 3) Disjoint Sets: Given a collection of subsets S = {S1, . . . , Sm} of {1, . . . , n} and an integer k,
pick k of these subsets {Si1 , . . . , Sik} that are pairwise disjoint, i.e., Sia ∩ Sib = ∅ for all a 6= b.

Proof: We will reduce the problem ... to the problem ...

Given an instance Φ of the problem ... we construct an instance Ψ of the problem ...

as follows ...

Proof of correctness of reduction not necessary
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DO NOT TEAR ANY PAGES OFF YOUR EXAM.

(Extra page for scratch work.)
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