
U.C. Berkeley — CS170 : Algorithms Midterm 1
Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, 2017

Midterm 1

Name:

SID:

Exam Room:

Name of student to your left:

Name of student to your right:

Do not turn this page until your instructor tells you to do so.

• After the exam starts, please write your student ID (or name) on every odd-numbered page (we will
remove the staple when scanning your exam).

• For short question, your answers must be written clearly inside the box region. Any answer outside
the box will not be graded. For longer question, if you run out of space, you must clearly mention in
the space provided for the question if part of your answers is elsewhere.

• Try to answer all questions. Not all parts of a problem are weighted equally. Before you answer any
question, read the problem carefully. Be precise and concise in your answers.

• You may use the blank page at the back for scratch work, but it will not be graded.

• You may consult only one sheet of notes. Apart from that, you may not look at books, notes, etc.
Calculators, phones, computers, and other electronic devices are NOT permitted.

• There are 16 single sided pages on the exam. Notify a proctor immediately if a page is missing.

• Any algorithm covered in the lecture can be used as a blackbox.

• You have 80 minutes: there are 11 questions on this exam worth a total of 90 points.



2



SID:

1. (4 points) For the directed graph below, find all the strongly connected components and draw the
DAG of strongly connected components. Label each strongly connected component with all the nodes
it contains.

B A J

C D E

F G H

Draw the DAG in the box below:

3



2. (8 points) Execute DFS on the same graph (reproduced here for convenience) starting at node A and
breaking ties alphabetically. Draw the DFS tree/forest. Mark the pre and post values of the nodes
with numbering starting from 1.

B A J

C D E

F G H

Node pre post
A

B

C

D

E

F

G

H

J

Draw the DFS Tree/Forest in the box below:

4



SID:

3. (4 points) In the DFS execution from above, mark the following edges as as T for Tree, F for Forward,
B for Back and C for Cross. (No justification necessary)

Edge Type
G→ C

A→ J

B → A

B → D

4. (a) (4 points) Draw a strongly connected graph with 6 vertices with the smallest possible number
of edges in the box below.

(b) (2 points) In general, the minimum number of edges in a strongly connected directed graph with

n vertices is . (no justification necessary)

5. (6 points) Suppose G = (V,E) is an undirected graph with positive integer edge weights {we|e ∈ E}.
We would like to find the shortest path between two vertices s and t with an additional requirement:
if there are multiple shortest paths, we would like to find one that has the minimum number of edges.

We would like to define new weights {w′
e|e ∈ E} for the edges so that, a single execution of Dijkstra’s

algorithm on the graph G with new weights {w′
e}, starting from s finds the shortest path to t with this

additional requirement.

How should we set the new weights w′
e?

w′
e =

No justification necessary.

5



6. (8 points) Here is an implementation of Bellman-Ford algorithm:

Input: Directed Graph G = (V,E), with edge lengths {`e|e ∈ E}.
Output: Compute distances dist(u) to each vertex u from a start vertex s.

It turns out that the runtime of the above algorithm can be very sensitive to the way in which vertices

for i = 1 to n do
dist(u)←∞
prev(u)← nil

end for
dist(s)← 0
k ← 0
repeat
for i = 1 to n do
for each directed edge (i, j) do

update(i, j)
end for

end for
k ← k + 1

until all dist values stop changing OR (k = n)
Algorithm 1: Bellman-Ford Algorithm

in a graph are numbered. In other words, the runtime of the algorithm on the same graph can widely
vary, if we change the numbering of the vertices.

Give one graph G on 11 vertices and two ways to label the vertices of G, such that in one labelling the
algorithm makes 20 calls to update, while in the other labelling the algorithm terminates in 102 calls
to update.

6



SID:

7. (6 points) We computed the minimum spanning tree T on a graph G with costs {ce}e∈E . Unfortu-
nately, after computing the minimum spanning tree, we discover that the costs of all the edges in the
graph have changed as follows: the new cost we are given by,

we =

{
2 · ce if ce > 100

0 if ce ≤ 100

Is the tree T that we computed earlier, still a minimum spanning tree of the graph?

Write “yes” or “no”:

If yes, prove; if no, disprove with a counterexample.

7



8. (6 points) In this graph, some of the edge weights are known, while the rest are unknown.

D C

B

A

E F

G H

?

? ?

?

?

??

2

1

4

3

cost(A,D) = 2, cost(B,D) = 1, cost(C,D) = 4, cost(B,E) = 3

List all edges that must belong to a minimum spanning tree, regardless of what the unknown edge
weights turn out to be. Justify each of your edges briefly (a sentence or less is enough).

Edges that must belong to
every MST

Justification

8



SID:

9. Design an efficient algorithm for the following problem

Input: n numbers {a1, . . . , an}
Goal: Compute the polynomial with a1, . . . , an as its roots. In other words, compute

coefficients b0, . . . , bn so that (x− a1) · (x− a2) · · · (x− an) = b0 + b1x + . . . bnx
n.

(Hint: Try divide and conquer & use O(n log n) time polynomial multiplication algorithm as a blackbox)

(a) (10 points) Pseudocode:

(b) (3 points) Write the recurrence for the running time of the algorithm in the box.

T (n) =

9



(c) (6 points) Solve the recurrence to compute the running time and put your answer in the box.
Show your work below the box.

T (n) =

10



SID:

10. (13 points) You are given the road network G = (V,E) of a country, and the lengths {`e|e ∈ E} of
each road in the network.

Some of the cities have airports, while others don’t. Let F be the subset of cities that have an airport
in them.

Devise an algorithm to compute the distance from each city to the nearest airport. (Assume that the
graph is directed and that all edge lengths are non-negative).

Remember every correct algorithm will receive a score depending on its runtime. (can you do it with
the same run-time as Dijkstra’s?).

(a) Main Idea: (try less than 6 sentences if you can, but don’t fret if you go over)

(b) Runtime of the algorithm =

11



(c) Proof of Correctness (try less than 4 sentences if you can, but don’t fret if you go over)

12



SID:

11. (10 points) Suppose you are given an array A[1 . . . n] of sorted integers that has been circularly shifted
k positions to the right for some k. For example, [35, 42,−5, 15, 27, 29] is a sorted array that has been
circularly shifted k = 2 positions, while [27, 29, 35, 42,−5, 15] has been shifted k = 4 positions. We can
obviously find the largest element in A in O(n) time.

Assuming all the integers in the array are distinct, describe an O(log n) algorithm to find the largest
element in A.

Brief but precise description of the algorithm: (try less than 6 sentences if you can, but don’t
fret if you go over)

13



(Extra Page)

14



SID:

(Extra Page)

15



(Extra Page)

16


