CS 170 HW 1

Due on 2018-09-02, at 11:59 pm

1 (\star) Study Group

List the names and SIDs of the members in your study group.

2 ($\star \star \star$) Analyze the running time

For each pseudo-code snippet below, give the asymptotic running time in Θ notation. Assume that basic arithmetic operations (,,$+- \times$, and $/$) are constant time.
(a)

```
for }i:=1\mathrm{ to }n\mathrm{ do
            j:= 0;
    while j\leqi do
            | j:= \overline{j}+2
    end
end
```

(c)
while $i \leq n$ do
$\quad i:=i^{2}$
end
$i:=2$;

```
\(s:=0 ;\)
\(i:=n\);
while \(i \geq 1\) do
```

(b)
(d)
for $i:=1$ to n do
$j:=i^{2} ;$
while $j \leq n$ do
$j:=\bar{j}+1$
end
end
$3(\star \star \star)$ Asymptotic Complexity Comparisons
(a) Order the following functions so that $f_{i}=O\left(f_{j}\right) \Longleftrightarrow i \leq j$. Do not justify your answers.
(i) $f_{1}(n)=3^{n}$
(ii) $f_{2}(n)=n^{\frac{1}{3}}$
(iii) $f_{3}(n)=12$
(iv) $f_{4}(n)=2^{\log _{2} n}$
(v) $f_{5}(n)=\sqrt{n}$
(vi) $f_{6}(n)=2^{n}$
(vii) $f_{7}(n)=\log _{2} n$
(viii) $f_{8}(n)=2^{\sqrt{n}}$
(ix) $f_{9}(n)=n^{3}$
(b) In each of the following, indicate whether $f=O(g), f=\Omega(g)$, or both (in which case $f=\Theta(g))$. Briefly justify each of your answers. Recall that in terms of asymptotic growth rate, logarithmic $<$ linear $<$ polynomial $<$ exponential.

	$f(n)$	$g(n)$
(i)	$\log _{3} n$	$\log _{4} n$
$(i i)$	$n \log \left(n^{4}\right)$	$n^{2} \log \left(n^{3}\right)$
$($ iii $)$	\sqrt{n}	$(\log n)^{3}$
$($ iv $)$	2^{n}	2^{n+1}
(v)	n	$(\log n)^{\log \log n}$
$(v i)$	$n+\log n$	$n+(\log n)^{2}$
$(v i i)$	$\log (n!)$	$n \log n$

4 ($\star \star$) Bit Counter

Consider an n-bit counter that counts from 0 to 2^{n}.
When $n=5$, the counter has the following values:

Step	Value	\# Bit-Flips
0	00000	-
1	00001	1
2	00010	2
3	00011	1
4	00100	3
\vdots	\vdots	
31	11111	1
31	00000	5

For example, the last two bits flip when the counter goes from 1 to 2. Using $\Theta(\cdot)$ notation, find the growth of the total number of bit flips (the sum of all the numbers in the "\# BitFlips" column) as a function of n.

5 ($\star \star$) Recurrence Relations

(a) $T(n)=4 T(n / 2)+42 n$
(b) $T(n)=4 T(n / 3)+n^{2}$
(c) $T(n)=2 T(2 n / 3)+T(n / 3)+n^{2}$
(d) $T(n)=3 T(n / 4)+n \log n$

6 ($\star \star$) Computing Factorials

Consider the problem of computing $N!=1 \times 2 \times \cdots \times N$.
(a) If N is an n-bit number, how many bits long is N !, approximately (in $\Theta(\cdot)$ form)?
(b) Give a simple algorithm to compute N ! and analyze its running time.

7 ($\star \star \star$) Four-subpart Algorithm Practice

Given a sorted array A of n integers, you want to find the index at which a given integer k occurs, i.e. index i for which $A[i]=k$. Design an efficient algorithm to find this i.

Main idea:

Psuedocode:

Proof of correctness:

Running time analysis:

8 ($\star \star \star$) Hadamard matrices

The Hadamard matrices $H_{0}, H_{1}, H_{2}, \ldots$ are defined as follows:

- H_{0} is the 1×1 matrix [1]
- For $k>0, H_{k}$ is the $2^{k} \times 2^{k}$ matrix

$$
H_{k}=\left[\begin{array}{c|c}
H_{k-1} & H_{k-1} \\
\hline H_{k-1} & -H_{k-1}
\end{array}\right]
$$

(a) Write down the Hadamard matrices H_{0}, H_{1}, and H_{2}.
(b) Compute the matrix-vector product $H_{2} v$, where H_{2} is the Hadamard matrix you found above, and $v=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$ is a column vector. Note that since H_{2} is a 4×4 matrix, and v is a vector of length 4 , the result will be a vector of length 4 .
(c) Now, we will compute another quantity. Take v_{1} and v_{2} to be the top and bottom halves of v respectively. Therefore, we have that $v_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, and $v=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$. Compute $u_{1}=H_{1}\left(v_{1}+v_{2}\right)$ and $u_{2}=H_{1}\left(v_{1}-v_{2}\right)$ to get two vectors of length 2. Stack u_{1} above u_{2} to get a vector u of length 4 . What do you notice about u ?
(d) Suppose that

$$
v=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

is a column vector of length $n=2^{k} . v_{1}$ and v_{2} are the top and bottom half of the vector, respectively. Therefore, they are each vectors of length $\frac{n}{2}=2^{k-1}$. Write the matrix-vector product $H_{k} v$ in terms of H_{k-1}, v_{1}, and v_{2} (note that H_{k-1} is a matrix of dimension $\frac{n}{2} \times \frac{n}{2}$, or $2^{k-1} \times 2^{k-1}$). Since H_{k} is a $n \times n$ matrix, and v is a vector of length n, the result will be a vector of length n.
(e) Use your results from (c) to come up with a divide-and-conquer algorithm to calculate the matrix-vector product $H_{k} v$, and show that it can be calculated using $O(n \log n)$ operations. Assume that all the numbers involved are small enough that basic arithmetic operations like addition and multiplication take unit time.

