CS 170 HW 1

Due on 2018-09-02, at 11:59 pm

1 (\bigstar) Study Group

List the names and SIDs of the members in your study group.

2 $(\bigstar \bigstar \bigstar)$ Analyze the running time

For each pseudo-code snippet below, give the asymptotic running time in Θ notation. Assume that basic arithmetic operations $(+, -, \times, \text{ and } /)$ are constant time.

 $j := i^2;$

end

while $j \leq n$ do

 $j := \overline{j} + 1$

(a) $\begin{array}{l} \text{for } i \coloneqq 1 \text{ to } n \text{ do} \\ j \coloneqq 0; \\ \text{while } j \leq i \text{ do} \\ \mid j \coloneqq j + 2 \\ \text{end} \\ \text{end} \end{array}$ (c) $\begin{array}{l} i \coloneqq 2; \\ \text{while } i \leq n \text{ do} \\ \mid i \coloneqq i^2 \\ \text{end} \\ \text{end} \end{array}$ (c) $\begin{array}{l} \text{while } i \leq n \text{ do} \\ \mid i \coloneqq i^2 \\ \text{end} \end{array}$

(b) s := 0; i := n;while $i \ge 1$ do i := i div 2; for j := 1 to i do i := s + 1end
end

3 $(\bigstar \bigstar)$ Asymptotic Complexity Comparisons

- (a) Order the following functions so that $f_i = O(f_j) \iff i \leq j$. Do not justify your answers.
 - (i) $f_1(n) = 3^n$
 - (ii) $f_2(n) = n^{\frac{1}{3}}$
 - (iii) $f_3(n) = 12$
 - (iv) $f_4(n) = 2^{\log_2 n}$
 - (v) $f_5(n) = \sqrt{n}$
 - (vi) $f_6(n) = 2^n$
 - (vii) $f_7(n) = \log_2 n$

(viii) $f_8(n) = 2^{\sqrt{n}}$

(ix) $f_9(n) = n^3$

- (b) In each of the following, indicate whether f = O(g), $f = \Omega(g)$, or both (in which case $f = \Theta(g)$). **Briefly** justify each of your answers. Recall that in terms of asymptotic growth rate, logarithmic < linear < polynomial < exponential.
 - f(n)g(n)(i) $\log_3 n$ $\log_4 n$ (*ii*) $n \log(n^4)$ $n^2 \log(n^3)$ $(\log n)^3$ (*iii*) \sqrt{n} 2^{n+1} (iv) 2^n $(\log n)^{\log \log n}$ (v)n $n + (\log n)^2$ (vi) $n + \log n$ $(vii) \log(n!)$ $n \log n$

4 $(\bigstar \bigstar)$ Bit Counter

Consider an *n*-bit counter that counts from 0 to 2^n .

When n = 5, the counter has the following values:

	,	
Step	Value	# Bit-Flips
0	00000	—
1	00001	1
2	00010	2
3	00011	1
4	00100	3
÷	:	
31	11111	1
31	00000	5

For example, the last two bits flip when the counter goes from 1 to 2. Using $\Theta(\cdot)$ notation, find the growth of the *total* number of bit flips (the sum of all the numbers in the "# Bit-Flips" column) as a function of n.

5 $(\bigstar \bigstar)$ Recurrence Relations

(a) T(n) = 4T(n/2) + 42n

(b)
$$T(n) = 4T(n/3) + n^2$$

- (c) $T(n) = 2T(2n/3) + T(n/3) + n^2$
- (d) $T(n) = 3T(n/4) + n \log n$

6 $(\bigstar \bigstar)$ Computing Factorials

Consider the problem of computing $N! = 1 \times 2 \times \cdots \times N$.

(a) If N is an n-bit number, how many bits long is N!, approximately (in $\Theta(\cdot)$ form)?

(b) Give a simple algorithm to compute N! and analyze its running time.

7 $(\bigstar \bigstar \bigstar)$ Four-subpart Algorithm Practice

Given a sorted array A of n integers, you want to find the index at which a given integer k occurs, i.e. index i for which A[i] = k. Design an efficient algorithm to find this i.

Main idea:

Psuedocode:

Proof of correctness:

Running time analysis:

8 $(\bigstar \bigstar \bigstar)$ Hadamard matrices

The Hadamard matrices H_0, H_1, H_2, \ldots are defined as follows:

- H_0 is the 1×1 matrix [1]
- For $k > 0, H_k$ is the $2^k \times 2^k$ matrix

$$H_k = \begin{bmatrix} H_{k-1} & H_{k-1} \\ \hline H_{k-1} & -H_{k-1} \end{bmatrix}$$

(a) Write down the Hadamard matrices H_0 , H_1 , and H_2 .

(b) Compute the matrix-vector product H_2v , where H_2 is the Hadamard matrix you found above, and $v = \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix}$ is a column vector. Note that since H_2 is a 4×4 matrix, and v is

a vector of length 4, the result will be a vector of length 4.

- (c) Now, we will compute another quantity. Take v_1 and v_2 to be the top and bottom halves of v respectively. Therefore, we have that $v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, and $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$. Compute $u_1 = H_1(v_1 + v_2)$ and $u_2 = H_1(v_1 - v_2)$ to get two vectors of length 2. Stack u_1 above u_2 to get a vector u of length 4. What do you notice about u?
- (d) Suppose that

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

is a column vector of length $n = 2^k$. v_1 and v_2 are the top and bottom half of the vector, respectively. Therefore, they are each vectors of length $\frac{n}{2} = 2^{k-1}$. Write the matrix-vector product $H_k v$ in terms of H_{k-1} , v_1 , and v_2 (note that H_{k-1} is a matrix of dimension $\frac{n}{2} \times \frac{n}{2}$, or $2^{k-1} \times 2^{k-1}$). Since H_k is a $n \times n$ matrix, and v is a vector of length n, the result will be a vector of length n.

(e) Use your results from (c) to come up with a divide-and-conquer algorithm to calculate the matrix-vector product $H_k v$, and show that it can be calculated using $O(n \log n)$ operations. Assume that all the numbers involved are small enough that basic arithmetic operations like addition and multiplication take unit time.