
CS 170, Fall 2018 HW 1 A. Chiesa & S. Rao

CS 170 HW 1

Due on 2018-09-02, at 11:59 pm

1 (F) Study Group

List the names and SIDs of the members in your study group.

2 (FFF) Analyze the running time

For each pseudo-code snippet below, give the asymptotic running time in Θ notation. Assume
that basic arithmetic operations (+,−,×, and /) are constant time.

(a)

for i := 1 to n do
j := 0;
while j ≤ i do

j := j + 2
end

end

(b)

s := 0;
i := n;
while i ≥ 1 do

i := i div 2;
for j := 1 to i do

s := s + 1
end

end

(c)

i := 2;
while i ≤ n do

i := i2

end

(d)

for i := 1 to n do
j := i2;
while j ≤ n do

j := j + 1
end

end

3 (FFF) Asymptotic Complexity Comparisons

(a) Order the following functions so that fi = O(fj) ⇐⇒ i ≤ j. Do not justify your
answers.

(i) f1(n) = 3n

(ii) f2(n) = n
1
3

(iii) f3(n) = 12

(iv) f4(n) = 2log2 n

(v) f5(n) =
√
n

(vi) f6(n) = 2n

(vii) f7(n) = log2 n

1



CS 170, Fall 2018 HW 1 A. Chiesa & S. Rao

(viii) f8(n) = 2
√
n

(ix) f9(n) = n3

(b) In each of the following, indicate whether f = O(g), f = Ω(g), or both (in which case
f = Θ(g)). Briefly justify each of your answers. Recall that in terms of asymptotic
growth rate, logarithmic < linear < polynomial < exponential.

f(n) g(n)
(i) log3 n log4 n

(ii) n log(n4) n2 log(n3)
(iii)

√
n (log n)3

(iv) 2n 2n+1

(v) n (log n)log logn

(vi) n + log n n + (log n)2

(vii) log(n!) n log n

4 (FF) Bit Counter

Consider an n-bit counter that counts from 0 to 2n.
When n = 5, the counter has the following values:
Step Value # Bit-Flips

0 00000 –
1 00001 1
2 00010 2
3 00011 1
4 00100 3
...

...
31 11111 1
31 00000 5

For example, the last two bits flip when the counter goes from 1 to 2. Using Θ(·) notation,
find the growth of the total number of bit flips (the sum of all the numbers in the “# Bit-
Flips” column) as a function of n.

5 (FF) Recurrence Relations

(a) T (n) = 4T (n/2) + 42n

(b) T (n) = 4T (n/3) + n2

(c) T (n) = 2T (2n/3) + T (n/3) + n2

(d) T (n) = 3T (n/4) + n log n

2



CS 170, Fall 2018 HW 1 A. Chiesa & S. Rao

6 (FF) Computing Factorials

Consider the problem of computing N ! = 1× 2× · · · ×N .

(a) If N is an n-bit number, how many bits long is N !, approximately (in Θ(·)form)?

(b) Give a simple algorithm to compute N ! and analyze its running time.

7 (FFF) Four-subpart Algorithm Practice

Given a sorted array A of n integers, you want to find the index at which a given integer k
occurs, i.e. index i for which A[i] = k. Design an efficient algorithm to find this i.

Main idea:

Psuedocode:

Proof of correctness:

Running time analysis:

8 (FFF) Hadamard matrices

The Hadamard matrices H0, H1, H2, . . . are defined as follows:

• H0 is the 1× 1 matrix [1]

• For k > 0, Hk is the 2k × 2k matrix

Hk =

[
Hk−1 Hk−1
Hk−1 −Hk−1

]
(a) Write down the Hadamard matrices H0, H1, and H2.

3



CS 170, Fall 2018 HW 1 A. Chiesa & S. Rao

(b) Compute the matrix-vector product H2v, where H2 is the Hadamard matrix you found

above, and v =


1
−1
−1
1

 is a column vector. Note that since H2 is a 4× 4 matrix, and v is

a vector of length 4, the result will be a vector of length 4.

(c) Now, we will compute another quantity. Take v1 and v2 to be the top and bottom

halves of v respectively. Therefore, we have that v1 =

[
1
−1

]
, v2 =

[
−1
1

]
, and v =

[
v1
v2

]
.

Compute u1 = H1(v1 + v2) and u2 = H1(v1 − v2) to get two vectors of length 2. Stack
u1 above u2 to get a vector u of length 4. What do you notice about u?

(d) Suppose that

v =

[
v1
v2

]
is a column vector of length n = 2k. v1 and v2 are the top and bottom half of the
vector, respectively. Therefore, they are each vectors of length n

2 = 2k−1. Write the
matrix-vector product Hkv in terms of Hk−1, v1, and v2 (note that Hk−1 is a matrix of
dimension n

2 ×
n
2 , or 2k−1× 2k−1). Since Hk is a n×n matrix, and v is a vector of length

n, the result will be a vector of length n.

(e) Use your results from (c) to come up with a divide-and-conquer algorithm to calculate
the matrix-vector product Hkv, and show that it can be calculated using O(n log n)
operations. Assume that all the numbers involved are small enough that basic arithmetic
operations like addition and multiplication take unit time.

4


	() Study Group
	() Analyze the running time
	() Asymptotic Complexity Comparisons
	() Bit Counter
	() Recurrence Relations
	() Computing Factorials
	() Four-subpart Algorithm Practice
	() Hadamard matrices

