
CS 170, Fall 2018 HW 2 A. Chiesa & S. Rao

CS 170 HW 2

Due on 2018-09-09, at 11:59 pm

1 (F) Study Group

List the names and SIDs of the members in your study group.

2 (FF) Counting inversions

This problem arises in the analysis of rankings. Consider comparing two rankings. One way
is to label the elements (books, movies, etc.) from 1 to n according to one of the rankings,
then order these labels according to the other ranking, and see how many pairs are “out of
order”.
We are given a sequence of n distinct numbers a1, · · · , an. We say that two indices i < j form
an inversion if ai > aj , that is if the two elements ai and aj are “out of order”. Provide a
divide and conquer algorithm to determine the number of inversions in the sequence a1, · · · , an
in time O(n log n) (Four part solution required. Hint: Modify merge sort to count during
merging).

3 (FFF) Two sorted arrays

You are given two sorted arrays, each of size n. Give as efficient an algorithm as possible to
find the k-th smallest element in the union of the two arrays. What is the running time of
your algorithm as a function of k and n? (Four part solution required.)

4 (FFFF) Majority Elements

An array A[1 . . . n] is said to have a majority element if more than half of its entries are the
same. Given an array, the task is to design an efficient algorithm to tell whether the array
has a majority element, and if so to find that element. The elements of the array are not
necessarily from some ordered domain like the integers, so there can be no comparisons of
the form “is A[i] > A[j]?”. (Think of the array elements as GIF files, say.) The elements are
also not hashable, i.e., you are not allowed to use any form of sets or maps with constant
time insertion and lookups. However you can answer questions of the form: “is A[i] = A[j]?”
in constant time. Four part solutions are required for each part below.

(a) Show how to solve this problem in O(n log n) time. (Hint: Split the array A into two
arrays A1 and A2 of half the size. Does knowing the majority elements of A1 and A2

help you figure out the majority element of A? If so, you can use a divide-and-conquer
approach.)

(b) Can you give a linear-time algorithm? (This algorithm would run in O(n log n) time, but
you should not reuse this algorithm to answer part a)

1



CS 170, Fall 2018 HW 2 A. Chiesa & S. Rao

5 (FFFFF) Merged Median

Given k sorted arrays of length l, design a deterministic algorithm (i.e. an algorithm that
uses no randomness) to find the median element of all the n = kl elements. Your algorithm
should run asymptotically faster than O(n).

(You need to give a four-part solution for this problem.)

6 (FF) Fourier Transform Basics

Answer the following. Do any required matrix multiplications by hand, using e.g. a Fourier
transform calculator will not get you full credit.

(a) What is the Fourier transform of (3, i, 2, 4)?

(b) Find x and y such that FT(x) = (5, 2, 1,−i) and FT(y) = (4, 4, i, i).

(c) Using part b, find z such that FT(z) = (1,−2, 1− i,−2i). (Hint: Observe that FT(v) is
a linear transform of v, and recall the properties of linear transforms).

(d) Compute (2x2 + 1)(x + 4) using a Fourier transform. (Hint: Recall that to multiply
two polynomials, first, they must both be converted by the Fourier transformation, then
multiplied pointwise, and finally converted back to coefficient form)

7 (FF) Modular Fourier Transform

Fourier transforms (FT) have to deal with computations involving irrational numbers which
can be tricky to implement in practice. Motivated by this, in this problem you will demon-
strate how to do a Fourier transform in modular arithmetic, using modulo 5 as an example.

(a) There exists ω ∈ {0, 1, 2, 3, 4} such that all the powers ω, ω2, . . . , ω4 are distinct (modulo
5). When doing the FT in modulo 5, this ω will serve a similar role to the primitive root
of unity in our standard FT. Find such an ω (there are multiple, you only need to find
one), and show that ω+ω2+ω3+ω4 = 0 (mod 5). (Interestingly, for any prime modulus
there is such a number.)

(b) Using the matrix form of the FT, produce the transform of the sequence (0, 1, 0, 2) modulo
5; that is, multiply this vector by the matrix M4(ω), for the value ω you found earlier.
Be sure to explicitly write out the FT matrix you will be using (with specific values,
not just powers of ω). In the matrix multiplication, all calculations should be performed
modulo 5.

(c) Write down the matrix necessary to perform the inverse FT. Show that multiplying by
this matrix returns the original sequence. (Again all arithmetic should be performed
modulo 5.)

(d) Now show how to multiply the polynomials 2x2 + 3 and −x + 3 using the FT modulo 5.

2



CS 170, Fall 2018 HW 2 A. Chiesa & S. Rao

8 (FFF) Polynomial from roots

Given a polynomial with exactly n distinct roots at r1, . . . , rn, compute the coefficient repre-
sentation of this polynomial in time. Your runtime should be O(n logc n) for some constant
c (you should specify what c is in your runtime analysis). There may be multiple possible
answers, but your algorithm should return the polynomial where the coefficient of the highest
degree term is 1. You can give only the main idea and runtime analysis, a four part solution
is not required.

Note: A root of a polynomial p is a number r such that p(r) = 0. The polynomial with

roots r1, ..., rk can be expressed as
∏
i

(x− ri).

3


	() Study Group
	() Counting inversions
	() Two sorted arrays
	() Majority Elements
	() Merged Median
	() Fourier Transform Basics
	() Modular Fourier Transform
	() Polynomial from roots

