
CS 170, Fall 2018 HW 4 A. Chiesa & S. Rao

CS 170 HW 4

Due on 2018-09-23, at 9:59 pm

1 (F) Study Group

List the names and SIDs of the members in your study group.

2 (FF) Maximum Subarray Sum

Given an array of n integers, the maximum subarray is the contiguous subarray (potentially
empty) with the largest sum. Design a linear algorithm to find the sum of the maximum
subarray. For example the maximum subarray of [−2, 1,−3, 4,−1, 2, 1,−5, 4] is [4,−1, 2, 1],
whose sum is 6.

Please give a three-part solution of the following format:

(a) Clearly describe your algorithm. You can include the pseudocode optionally.

(b) Write a proof of correctness.

(c) Write a runtime analysis.

3 (F) MST Basics

For each of the following statements, either prove or supply a counterexample. Always assume
G = (V,E) is undirected and connected. Do not assume the edge weights are distinct unless
specifically stated.

(a) Let e be any edge of minimum weight in G. Then e must be part of some MST.

(b) If e is part of some MST of G, then it must be a lightest edge across some cut of G.

(c) If G has a cycle with a unique lightest edge e, then e must be part of every MST.

(d) For any r > 0, define an r-path to be a path whose edges all have weight less than r. If
G contains an r-path from s to t, then every MST of G must also contain an r-path from
s to t.

4 (F) Prim’s Algorithm

A popular alternative to Kruskal’s algorithm is Prim’s algorithm, in which the intermediate
set of edges X always forms a subtree, and S is chosen to be the set of this tree’s vertices.
We can think of Prim’s algorithm as greedily processing one vertex at a time, adding it to
S. The pseudocode below gives the basic outline of Prim’s algorithm. See the book for a
detailed example of a run of the algorithm.

1



CS 170, Fall 2018 HW 4 A. Chiesa & S. Rao

S = {v}
X = {}
While S 6= V:

Choose t ∈ V \S, s ∈ S such that weight(s, t) i s minimized
X = X ∪ {(s, t)}
S = S ∪ {t}

Return X

(a) Run Prim’s algorithm on the following graph, starting from A, stating which node you
processed and which edge you added at each step .

A B C

D E F

2

3
5

3

2
1

4

5
2

3 4

(b) Prim’s algorithm is very similar to Dijkstra’s in that a vertex is processed at each step
which minimizes some cost function. These algorithms also produce similar outputs:
the union of all shortest paths produced by a run of Dijkstra’s algorithm forms a tree.
However, the trees they produce aren’t optimizing for the same thing. To see this, give
an example of a graph for which different trees are produced by running Prim’s algorithm
and Dijkstra’s algorithm. In other words, give a graph where there is a shortest path
from a start vertex A using at least one edge that doesn’t appear in any MST.

5 (F) Divide and Conquer for MST?

Is the following algorithm correct? If so, prove it. Otherwise, give a counterexample and
explain why it doesn’t work.

procedure FindMST(G: graph on n vertices)
If n = 1 return the empty set
T1 ← FindMST(G1: subgraph of G induced on vertices {1, . . . , n/2})
T2 ← FindMST(G2: subgraph of G induced on vertices {n/2 + 1, . . . , n})
e← cheapest edge across the cut {1, . . . , n2 } and {n2 + 1, . . . , n}.
return T1 ∪ T2 ∪ {e}.

2


	() Study Group
	() Maximum Subarray Sum
	() MST Basics
	() Prim's Algorithm
	() Divide and Conquer for MST?

