CS 170, Fall 2018 HW 6 A. Chiesa & S. Rao

CS 170 HW 6

Due on 2018-10-07, at 9:59 pm
1 (%) Study Group

List the names and SIDs of the members in your study group.

2 (%% %) Horn Formulas

Describe an algorithm which finds a satisfying assignment for a Horn formula, or reports that
none exists, in time linear in the size of the formula. Prove that your algorithm is correct
and runs in linear time.

3 (% %) Graph Game

Given an undirected, unweighted graph G, with each node v having a value ¢(v) > 0, consider
the following game.

1. All nodes are initially unmarked and your score is 0.

2. Choose an unmarked node u. Let M (u) be the marked neighbours of u. Add 3~ pr(,) €(v)
to your score. Then mark w.

3. Repeat the last step for as many turns as you like, or until all the nodes are marked.

For instance, suppose we had the graph:

O—E—0©

with £(A) = 3, {(B) =2, ¢{(C') = 3. Then, an optimal strategy is to mark A then C then B
giving you a score of 0 4+ 04 6. We can check that no other order will give us a better score.

(a) Is it ever better to leave a node unmarked? Briefly justify your answer.

(b) Give a greedy algorithm to find the order which gives the best score. Describe your
algorithm, prove its optimality, and analyse its running time.

(c) Now suppose that £(v) can be negative. Give an example where your algorithm fails.

(d) Your friend suggests the following modified algorithm: delete all v with ¢(v) < 0, then
run your greedy algorithm on the resulting graph. Give an example where this algorithm
fails.
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4 (% %) Tree Perfect Matching

A perfect matching in an undirected graph G = (V, E) is a set of edges E' C E such that for
every vertex v € V, there is exactly one edge in E’ which is incident to v.

Give an algorithm which finds a perfect matching in a tree, or reports that no such
matching exists. Describe your algorithm, prove that it is correct and analyse its running
time.

5 (% %) Steel Beams

You're a construction engineer tasked with building a new transit center for a large city. The
design for the center calls for a T-foot-long steel beam for integer T' > 0. Your supplier can
provide you with an unlimited number of steel beams of integer lengths 0 < ¢; < ... < ¢
feet. You can weld as many beams as you like together; if you weld together an a-foot beam
and a b-foot beam you’ll have an (a + b)-foot beam. Unfortunately, every weld increases the
chance that the beam might break, so you want as few as possible.

Your task is to design an algorithm which outputs how many beams of each length you
need to obtain a T-foot beam with the minimum number of welds, or ‘not possible’ if there’s
no way to make a T-foot beam from the lengths you're given. (If there are multiple optimal
solutions, your algorithm may return any of them.)

(a) Consider the following greedy strategy. Start with zero beams of each type. While the
total length of all the beams you have is less than T, add the longest beam you can
without the total length going over T

(i) Suppose that we have 1-foot, 2-foot and 5-foot beams. Show that the greedy strat-
egy always finds the optimum.

(ii) Find a (short) list of beam sizes c1, . .., ¢, and target T such that the greedy strategy
fails to find the optimum. Briefly justify your choice.

(b) Give a dynamic programming algorithm which always finds the optimum. Describe your
algorithm, including a clear statement of your recurrence, show that it is correct and
prove its running time. How much space does your algorithm use?

6 (%) Longest Increasing Subsequence

Given an array A of n integers, here is a linear time algorithm to find the length of the longest
strictly increasing subsequence, where M|j] represents the length of the longest increasing
subsequence of the first j integers of A.

M[1] =1
[ Mli—1 Al < A[i—1]
Mli] = { M[i—1]+1 otherwise

Verify that this algorithm takes linear time. Is the algorithm correct? Prove it is or give
a counter-example and explain.
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7 (k%% %) Propositional Parentheses

You are given a propositional logic formula using only A, V, T, and F' that does not have
parentheses. You want to find out how many different ways there are to correctly parenthesize
the formula so that the resulting formula evaluates to true.

A formula A is correctly parenthesized if A=T, A=F,or A= (BAC)or A= (BVC(C)
where B, C' are correctly parenthesized formulas. For example, the formula T'V F VT A F
can be correctly parenthesized in 5 ways:

(TV(FV(TAF)) (TVI(FVT)ANF)) (TVF)V(TANF))
((TVF)VT)NF) (TV(FVT)AF)

of which 3 evaluate to true: (T'VF)V(TAF)), (TV({(FVT)AF)),and (T'V(FV(TAF))).

(a) Give a dynamic programming algorithm to solve this problem. Describe your algorithm,
including a clear statement of your recurrence, show that it is correct, and prove its
running time.

(b) Briefly explain how you could use your algorithm to find the probability that, under a
uniformly randomly chosen correct parenthesization, the formula evaluates to true.
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