
CS 170, Fall 2018 HW 10 A. Chiesa & S. Rao

CS 170 HW 10

Due on 2018-11-04, at 9:59 pm

1 (F) Study Group

List the names and SIDs of the members in your study group.

2 (FFF) Existence of Perfect Matchings

Prove the following theorem: Let G = (L∪R,E) be a bipartite graph. Then G has a perfect
matching if and only if, for every set X ⊆ L, X is connected to at least |X| vertices in R.
Note that you must prove both directions. (Hint: Use the max-flow-min-cut theorem.)

3 (FF) A Reduction Warm-up

In the Rudrata path problem (aka the Hamiltonian Path Problem), we are given a graph G
and want to find if there is a path in G that uses each vertex exactly once.

Is the following argument correct? Please justify your answer.

We will show that Undirected Rudrata Path can be reduced to Longest Path in a DAG.
Given a graph G, use DFS to find a traversal of G and assign directions to all the edges in
G based on this traversal (i.e. edges will point in the same direction they were traversed and
back edges will be omitted). This gives a DAG. If the longest path in this DAG has |V | − 1
edges then there is a Rudrata path in G since any simple path with |V | − 1 edges must visit
every vertex.

4 (FFF) Decision vs. Search vs. Optimization

The following are three formulations of the vertex cover problem:

• As a decision problem: Given a graph G, return TRUE if it has a vertex cover of size
at most b, and FALSE otherwise.

• As a search problem: Given a graph G, find a vertex cover of size at most b (that is,
return the actual vertices), or report that none exists.

• As an optimization problem: Given a graph G, find a minimum vertex cover.

At first glance, it may seem that search should be harder than decision, and that opti-
mization should be even harder. We will show that if any one can be solved in polynomial
time, so can the others.

For the following parts, describe your algorithms precisely; justify correctness and the
number of times that the black box is queried (asymptotically).
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(a) Suppose you are handed a black box that solves vertex cover (decision) in polynomial
time. Give an algorithm that solves vertex cover (search) in polynomial time.

(b) Similarly, suppose we know how to solve vertex cover (search) in polynomial time.
Give an algorithm that solves vertex cover (optimization) in polynomial time.

5 (FFF) Convex Hull

Given n points in the plane, the convex hull is the list of points, in counter-clockwise order,
that describe the convex shape that contains all the other points. Imagine a rubber band is
stretched around all of the points: the set of points it touches is the convex hull.

In this problem we’ll show that the convex hull problem and sorting reduce to each other
in linear time.

Figure 1: An instance of convex hull: the convex hull is the seven points connected by dashed
lines. Note that three or more points in the convex hull can be collinear.

(a) Fill in the following algorithm for convex hull; you do not need to prove it correct. What
is its runtime? For simplicity, in this part you may assume no three points are collinear.

procedure ConvexHull(list of points P [1..n])
Set low := the point with the minimum y-coordinate, breaking ties by minimum

x-coordinate.
Create a list S[1..n − 1] of the remaining points sorted increasingly by the angle

between the vector point− low and the vector (1, 0) (i.e the x-axis) .
Initialize Hull := [low, S[1]]
for p ∈ S[2..n− 1] do

<fill in the body of the loop>

Return Hull

(b) Now, find a linear time reduction from sorting to convex hull. In other words, given a
list of real numbers to sort, describe an algorithm that transforms the list of numbers
into a list of points, feeds them into convex hull, and interprets the output to return the
sorted list. Then, prove that your reduction is correct.
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6 (FFF) More Reductions

Given a vector of non-negative integers [a1, a2, . . . , an], consider the following problems:

1 Partition: Determine whether there is a subset P ⊆ [n] ([n] := {1, 2, · · · , n}) such that∑
i∈P ai =

∑
j∈[n]\P aj

2 Subset Sum: Given some integer k, determine whether there is a subset P ⊆ [n] such
that

∑
i∈P ai = k

3 Knapsack: Given some set of items each with weight wi and value vi, as well as fixed
numbers W and V there is some subset P such that

∑
i∈P wi ≤W and

∑
i∈P vi ≥ V

For each of the following clearly describe your reduction, justify runtime and correctness.

(a) Find a linear time reduction from Subset Sum to Partition.

(b) Find a linear time reduction from Subset Sum to Knapsack.

7 (F) Runtime of NP

True or False (with brief justification): Suppose we can show for some fixed k, an NP-
complete problem P has a time O(nk) algorithm. Then every problem in NP has a O(nk)
time algorithm.
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