U.C. Berkeley — CS170: Algorithms
Professor Alessandro Chiesa and Satish Rao Scribes: A. Prakash, S. Rao, U. Vazirani
Last revised

1 Streaming Algorithms

The streaming model is one way to model the problem of analyzing massive data. The
model assumes that the data is presented as a stream (x1, 2, , 2,), where the items x;
are drawn from a universe of size n. Realtime data like server logs, user clicks and search
queries are modeled by streams. The available memory is much less than the size of the
stream, so a streaming algorithm must process a stream in a single pass using sublinear
space.

We consider the problem of estimating stream statistics using O(log®n) space. The
number of occurrences of element 7 in the stream is denoted by m;. The frequency moments
Fj, =Y, mk are natural statistics for streams.

The moment Fy counts the number of distinct items, an algorithm that estimates Fj
can be used to find number of unique visitors to a website, by processing the stream of
ip addresses. The moment F} is trivial as it is the length of the stream while computing
F5 is more involved. The streaming algorithms for estimating Fy and Fh rely on pairwise
independent hash functions, which we introduce next.

1.1 Deterministic algorithm

The following algorithm estimates item frequencies f; within an additive error of n/k using
with O(k(logn + logm)) memory,

1. Maintain set S of k counters, initialize to 0. For each element x; in stream:

2. If x; € S increment the counter for x;.

3. If x; ¢ S add x; to S if space is available, else decrement all counters in S.

An item in S whose count falls to 0 can be removed, the space requirement for storing k
counters is klogn and one needs to store the item which is O(klogm) as there are m items
in the universe, and the update time per item is O(k). The algorithm estimates the count
of an item as the value of its counter or zero if it has no counter.

Cram 1
The frequency estimate n; produced by the algorithm satisfies f; —n/k < nj; < f;.

PRrooF: Clearly, n; is less than the true frequency f;. Differences between f; and the value
of the estimate are caused by one of the two scenarios: (i) The item j ¢ S, each counter in
S gets decremented, this is the case when x; occurs in the stream but the counter for j is
not incremented. (ii) The counter for j gets decremented due to an element ;' that is not
contained in S.

Both scenarios result in k£ counters getting decremented hence they can occur at most
n/k times, showing that n; > f; —n/k. O

Notes for : Scribes: A. Prakash, S. Rao, U. Vazirani 2

1.2 Counting distinct items

Exactly counting the number of distinct elements in a stream requires O(n) space, we
will present a randomized algorithm that estimates the number of distinct elements to
a multiplicative factor of (1 & €) with high probability using poly(logn, %) space. The
probabilities are over the internal randomness used by the algorithm, the input stream is
deterministic and fixed in advance.

1.2.1 Exact counting requires O(n) space

Suppose A is an algorithm that counts the number of distinct elements in a stream S with
elements drawn from [n]. After executing A on the input stream S it acts as a membership
tester for S. On input x € [n] the count of distinct items increases by 1 if x ¢ S and stays
the same if z € S. The internal state of A must contain enough information to distinguish
between the 2" possible subsets of [n] that could have occurred in S. The algorithm requires
O(n) bits of storage to distinguish between 2™ possibilities.

1.2.2 A toy problem

Consider the following simpler version of approximate counting: The output should be ‘yes’
if the number of distinct items NV is more than 2k, ‘no’ if NV is less than k and we do not
care about the output if £k < N < 2k.

1. Choose a uniformly random hash function & : [n] — [B], where the number of
buckets B = O(k).
2. Output ‘yes’ if there is some x; € S such that h(z;) = 0 else output ‘no’.

The value h(x) is uniformly distributed on [B], so for all z € U we have Prpcy[h(z) =
0] = 1/B. If there are at most k distinct items in the stream, the probability that none of
the N items hash to 0 is,

Pr[A(:c)_No]NSk]_<1_;>NZ<1_;>k

If the number of elements is greater than 2k then the probability that the algorithm outputs

no is,
I\ 1\ 2k
Pr[A(x):N0|N>2k‘}:<1—B> §<1—B>

The gap between the probability of the output being ‘no’ for the two cases is a constant for
B = O(k).

However, specifying a random hash function requires O(nlog B) bits of storage, the
truth table must be stored to evaluate the hash function. The memory requirement can be
reduced by choosing h from a hash function family H of small size having good independence
properties.

2-wise independent hash functions: The property required from H is 2-wise inde-
pendence, informally a hash function family is 2 wise independent if the hash value h(x)
provides no information about h(y).

Notes for : Scribes: A. Prakash, S. Rao, U. Vazirani 3

CLAIM 2
The family H : [n] — {0,...,p — 1} consisting of functions h,p(x) = ax +b mod p where
p is a prime number greater than n and a,b € Z, is 2-wise independent,

Prlba) =cnh(y) =d = = Vaty

PRrROOF: If h(z) = ¢ and h(y) = d then the following linear equations are satisfied over Z,,
ar+b=c ay+b=d

The linear system has a unique solution (a, b) as the determinant (z — y) # 0 for distinct
x,7. The claim follows as |H| = p? and there is a unique function such that h(z) = ¢ and
h(y) = d.

O

This construction of 2 wise independent hash function families generalizes to k wise
independent families by choosing degree k£ polynomials. For the streaming algorithm we
require a 2-wise independent hash function family H : [n] — [B] where B is not a prime
number, the family h,, = (az+b mod p) mod B for a prime larger than p is approximately
2 wise independent.

1.3 Analysis

We analyze the algorithm using a random hash function from a pairwise independent family
H : [n] — [4k]. From claim ?7?, it follows that Pryu[h(x) = 0] = 1/B for all z € [U]. If
there are k elements in the stream the probability of some element being hashed to 0 can
be bounded using the union bound Pr[UA;] < > Pr[A;],

Eoo1
Pr[A(z) =Yes | N <k]|< = =- 1
HA(x) = Yes | N <K < 5 = &)
The inclusion exclusion principle is used to show that the probability of the output being
yes is large if there are more than 2k elements in the stream. Truncating the inclusion
exclusion formula to the first two terms yields Pr{UA;] > > Pr[A;] — > Pr[4; N A;]. Using
pairwise independence,

o% 2W.(2k—1)_ 2k, k. 3
= > > — -~ > (1l—-—=)=—=
Pr{A(z) = Yes | N > 2k] B o > 3 (1 B) 3 (2)

The yes and no cases are separated by a gap of 1/8, the memory used by the algorithm
is O(logn) as numbers a, b need to be stored. Using a combination of standard tricks, the
quality of approximation can be improved to 1 + e.

1.4 A 1+ ¢ approximation:

The probability of obtaining a correct answer is boosted to 1 — ¢ by running the algorithm
with several independent hash functions using the following simplified version of Chernoff
bounds,

Notes for : Scribes: A. Prakash, S. Rao, U. Vazirani 4

CLAaM 3
If a coin with bias b is flipped k = O(logE#) times, with probability 1 — § the number of
heads b satisfies bk(1—¢) < b< bk(1+¢€).

The algorithm is run for O(log1/d) independent iterations and the output is ‘yes’ if the
fraction of yes answers is more than 5/16. Applying the claim for the yes and no cases, it
follows that the correct answer is obtained with probability at least 1 — 4.

The number of distinct items N can be approximated to a factor of 2 using the binary
search trick. The algorithm is run simultaneously for the logn intervals [2F,2F+1] for k €
[logn]. If N € [2¥,2%*+1] then with high probability the first & — 1 runs answer ‘yes’, the
answer for the k-th run is indeterminate and the last logn — k — 1 runs answer ‘no’. The
first no in the sequence of answers occurs either for [2F,2F+1] or [28F1 2F+2] the left end
point of the interval where the transition occurs satisfies % < L <2N.

The third trick is to replace 2 by 1 + € in equations (1), (2) and change parameters
appropriately in the boosting part to approximate the number of distinct items in the
stream up to a factor of 1 L e.

The space requirement of the algorithm is O(logn.log; n.lOgE#), the logn is the
amount of memory required to store a single hash function, the log; . n is the number of
intervals considered and bgi# is the number of independent hash functions used for each
interval.

2 Estimating F5

The hash function h is chosen from a 4-wise independent family H : [n] — =£1. The
algorithm outputs Z? = (3, h(z;))? as an estimate for yu, the memory requirement is
O(logn). The analysis will show that E[Z?] = I, and that the variance is small. Denoting
the hash value h(j) by Y; we have,

Z = Z h(.%’z) = ZYJm]
i€[m] jeS

The expectation of Z2 can be computed by squaring and using the 2 wise independence of
the hash function to cancel out the cross terms,

B(Z%) = Y EYZm?+ Y BV EYmm; = > m? = F

A variance calculation is required to ensure that we obtain the correct answer with suf-
ficiently high probability. Recall that the variance of a random variable X is equal to
E[X?] — E[X]?, the variance calculation requires computing the fourth moment of Z,

B2 = 3 EYimd] + 65 B2V = Y + 65 mm?
i 1,3 (4,7
The variance of Z? can now be computed,

Var(2?) = E[Z*| - E[Z°) =4 mjm} < 2F;

Notes for : Scribes: A. Prakash, S. Rao, U. Vazirani 5

The Chebyshev inequality is useful for bounding the deviation of a random variable from
its mean,
Var(X)

Pr|X —p| = eFy] < TR

The variance is too large for Chebyshev’s inequality to be useful. The variance can be
reduced by running the procedure over k = 2/8¢? independent iterations, with the output
being Z = %Zie[k} Z2.

The expectation F[Z] = p by linearity and the the variance can be calculated using
relations Var[cX] = ¢2Var[X] and Var(X +Y) = Var(X) + Var(Y) for independent
random variables X and Y.

Z2] _ 2F}

Var[Z]) = A Q1

ar|Z] ZVar[k]_ ’
1€[k]

Applying the Chebychev inequality for Z = % Zie[k} Z? with k = %yields Pr[|Z —u| >
eFy] < §. The output of the algorithm Z is therefore a (1 £ €) approximation for p with
probability at least 1 — §. The memory requirement for the algorithm is O(logn/e?).

Optional Material.

2.1 Count min sketch

The turnstile model allows both additions and deletions of items in the stream. The stream
consists of pairs (i,¢;), where the ¢ € [m] is an item and ¢; is the number of items to be
added or deleted. The count of an item can not be negative at any stage, the frequency f;
of item j is f; = > ¢j.

The following algorithm estimates frequencies of all items up to an additive error of
€|f|1 with probability 1 — 4, the ¢; norm |f|; is the number of items present in the data set.
The two parameters k and ¢ in the algorithm are chosen to be (2,log(1/4)).

1. Maintain ¢ arrays A[i] each having k counters, hash function h; : U — [k] drawn from
a 2-wise independent family H is associated to array Ai].

2. For element (j, ¢;) in the stream, update counters as follows:

Aliy hi(7)] = Ali; hi(5)] + ¢ vi € [t]

3. The frequency estimate for item j is min;ep) A, h(7)].

The output estimate is always more than the true value of f; as the count of all the items
in the stream is non negative.

2.1.1 Analysis

To bound the error in the estimate for f; we need to analyze the excess X where A[1, h1(j)] =
fj+X. The excess X can be expressed as a sum of random variables X =) . Y; where the

Notes for : Scribes: A. Prakash, S. Rao, U. Vazirani 6

indicator random variable Y; = f; if hi1(j) = h1(¢) and O otherwise. As hy € H is chosen
uniformly at random from a 2-wise independent hash function family, E[Y;] = f;/k.

Ifli elfh
EX]="—=
[X] =~ 5
Applying Markov’s inequality, we have
1
PriX > elfli] < B

The probability that all the excesses at A[i, h;(z;] are greater than €| f|; is at most 1/2* < §
as t was chosen to be log(1/d). The algorithm estimates the frequency of item z; up to an
additive error €|f|; with probability 1 — 4.

The memory required for the algorithm is the sum of the space for the array and the
hash functions, O(ktlogn+tlogm) = O(Xlog(1/6) logn). The update time per item in the
stream is O(log §).

2.2 Count Sketch
We present another sketch algorithm with error in terms of the ¢ norm |fla = /> j ij.

The relation between the ¢; and ¢ norms is %]f\l < |fl2 < |f]1, the ¢3 norm is less than
the #1 norm so the guarantee for this algorithm is better than that for the previous one.

1. Maintain ¢ arrays A[i] each having k counters, hash functions g; : U — {—1,1}
and h; : U — [k] drawn uniformly at random from a 2-wise independent family are
associated to array A[i].

2. For element (j,¢;) in the stream, update counters as follows:
Ali, hi(§)] = Ali, hi(5)] + 9:(7)<j Vi € [{]
3. The frequency estimate for item j is the median over the ¢ arrays of g;(z;)A[i, h(j)].

2.2.1 Analysis

Again, the entry A[l, hi(j)] = g1(j)f; + X, we examine the contribution X from the other
items by writing X =). Y; where the indicator variable Y; is £f; if hi(i) = hq(j) and 0
otherwise. Note that E[Y;] = 0, so the expected value of g1 (j)A[1, h(j)] is f;.

The random variables Y; are pairwise independent as hj is a 2-wise independent hash
function, so the variance of X can be expressed as,

_ o LB
Var(X) = ZVar(YZ)f Z =

i€[m] i€[m]
We will use Chebyshev’s inequality to bound the deviation of X from its expected value,

Var(X)

Pr{X -l > A] < T4

Notes for : Scribes: A. Prakash, S. Rao, U. Vazirani 7

2
The mean p = 0 and the variance is %, choosing A = €|f|z and k = 4/¢? we have,

1 1

PrIX =l > dfh] < 57 < 7

For t = 0(log(1/9)), the probability that the median value deviates from g by more than

€| f]2 is less than ¢ by a Chernoff bound. That is, the probability that there are fewer than

t/2 success in a series of ¢ tosses of a coin with success probability 3/4 is smaller than ¢ for

t = O(log(1/9)).

Arguing as in the count min sketch the space required is O(EL2 log % log n) and the update

time per item is O(log }).

2.3 Remarks

The count sketch approximates f; within €| f|2 but requires 6(6%) space, while the count min

sketch approximates f; within €| f|; and requires 5(%) space. The approximation provided
by the sketch algorithms is meaningful only for items that occur with high frequency.

