box filter is not the best...
Moving Average

- Can add weights to our moving average

Weights $[\ldots, 0, 1, 1, 1, 1, 0, \ldots] / 5$
Weighted Moving Average

- bell curve (gaussian-like) weights [..., 1, 4, 6, 4, 1, ...]
Moving Average In 2D

What are the weights H?

<table>
<thead>
<tr>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$F[x, y]$

$H[u, v]$
Gaussian filtering

A Gaussian kernel gives less weight to pixels further from the center of the window.

\[
\begin{array}{cccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 90 & 0 & 90 & 90 & 90 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 70 & 0 & 90 & 90 & 90 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
H[u, v] = \frac{1}{16}
\]

This kernel is an approximation of a Gaussian function:

\[
h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}
\]
Mean vs. Gaussian filtering
Important filter: Gaussian

Weight contributions of neighboring pixels by nearness

\[
G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}
\]

\[
\begin{bmatrix}
0.003 & 0.013 & 0.022 & 0.013 & 0.003 \\
0.013 & 0.059 & 0.097 & 0.059 & 0.013 \\
0.022 & 0.097 & 0.159 & 0.097 & 0.022 \\
0.013 & 0.059 & 0.097 & 0.059 & 0.013 \\
0.003 & 0.013 & 0.022 & 0.013 & 0.003 \\
\end{bmatrix}
\]

5 x 5, \(\sigma = 1 \)
Gaussian Kernel

\[G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}} \]

- Standard deviation \(\sigma \): determines extent of smoothing

Source: K. Grauman
Gaussian filters

$\sigma = 1$ pixel
$\sigma = 5$ pixels
$\sigma = 10$ pixels
$\sigma = 30$ pixels
Choosing kernel width

• The Gaussian function has infinite support, but discrete filters use finite kernels

Source: K. Grauman
Practical matters

How big should the filter be?

Values at edges should be near zero

Rule of thumb for Gaussian: set filter half-width to about 3 σ
Cross-correlation vs. Convolution

cross-correlation: \[G = H \otimes F \]

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]
\]

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

\[
G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]
\]

It is written:

\[G = H \ast F \]

Convolution is **commutative** and **associative**.
Convolution

Adapted from F. Durand
Convolution is nice!

- Notation: \[b = c \ast a \]

- Convolution is a multiplication-like operation
 - commutative \(a \ast b = b \ast a \)
 - associative \(a \ast (b \ast c) = (a \ast b) \ast c \)
 - distributes over addition \(a \ast (b + c) = a \ast b + a \ast c \)
 - scalars factor out \(\alpha a \ast b = a \ast \alpha b = \alpha (a \ast b) \)
 - identity: unit impulse \(e = [..., 0, 0, 1, 0, 0, ...] \)
 \[a \ast e = a \]

- Conceptually no distinction between filter and signal

- Usefulness of associativity
 - often apply several filters one after another: \((((a \ast b_1) \ast b_2) \ast b_3) \)
 - this is equivalent to applying one filter: \(a \ast (b_1 \ast b_2 \ast b_3) \)
Gaussian and convolution

- Removes “high-frequency” components from the image (low-pass filter)
- Convolution with self is another Gaussian

\[
\text{\star} \quad =
\]

- Convolving twice with Gaussian kernel of width \(\sigma \)
 \[
 = \text{convolving once with kernel of width } \sigma \sqrt{2}
 \]

Source: K. Grauman
This image is too big to fit on the screen. How can we reduce it?

How to generate a half-sized version?
Image sub-sampling

Throw away every other row and column to create a $1/2$ size image - called *image sub-sampling*
Image sub-sampling

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Aliasing! What do we do?
Sampling an image

Examples of GOOD sampling
Undersampling

Examples of BAD sampling -> Aliasing
Gaussian (lowpass) pre-filtering

Solution: filter the image, \textit{then} subsample

- Filter size should double for each \(\frac{1}{2}\) size reduction. Why?

Slide by Steve Seitz
Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8
More Gaussian pre-filtering
A real problem! 128 x 128 → 64x64

Open-CV: default, bicubic, Lanczos4
Pytorch: bilinear, bicubic
PIL: Lanczos

Credit: @jaakkolehtinen
problems in NN too

pip install antialiased-cnns

Making Convolutional Networks Shift-Invariant Again, Richard Zhang ICML 2019
Iterative Gaussian (lowpass) pre-filtering

Filter the image, *then* subsample

- Filter size should double for each $\frac{1}{2}$ size reduction. Why?
- How can we speed this up?
Image Pyramids

Idea: Represent N x N image as a “pyramid” of 1x1, 2x2, 4x4,..., 2^k x 2^k images (assuming N = 2^k)

Known as a **Gaussian Pyramid** [Burt and Adelson, 1983]
- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*
A bar in the big images is a hair on the zebra’s nose; in smaller images, a stripe; in the smallest, the animal’s nose.

Figure from David Forsyth
Gaussian pyramid construction

Repeat
 • Filter
 • Subsample

Until minimum resolution reached
 • can specify desired number of levels (e.g., 3-level pyramid)

The whole pyramid is only 4/3 the size of the original image!
What are they good for?

Improve Search

- Search over translations
 - Classic coarse-to-fine strategy
 - Project 1!
- Search over scale
 - Template matching
 - E.g. find a face at different scales
What else are convolutions good for?

Taking derivative by convolution
(on board)
Partial derivatives with convolution

Image is function \(f(x,y) \)

Remember:
\[
\frac{\partial f(x, y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}
\]

Approximate:
\[
\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x + 1, y) - f(x, y)}{1}
\]

Another one:
\[
\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x + 1, y) - f(x - 1, y)}{2}
\]
Partial derivatives of an image

\[\frac{\partial f(x, y)}{\partial x} \quad \text{or} \quad \frac{\partial f(x, y)}{\partial y} \]

Which shows changes with respect to \(x \)?
The gradient points in the direction of most rapid increase in intensity.

- How does this direction relate to the direction of the edge?

The *edge strength* is given by the gradient magnitude

\[
\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}
\]

The gradient direction is given by

\[
\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)
\]

Source: Steve Seitz
Image Gradient

\[\| \nabla f \| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2} \]
Partial Derivatives

\[\frac{\partial f(x, y)}{\partial x}, \ \frac{\partial f(x, y)}{\partial y} \]
Gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$
Gradient Orientation

\[\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \text{ atan2}(\text{dy, dx}) \]

lightness is equal to gradient magnitude

Source: D. Fouhey
Image Gradient

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

all the gradients

Source: D. Fouhey
Image Gradient

Why is there structure at 1 and not at 2?

Source: D. Fouhey
Effects of noise

Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal

Where is the edge?

Source: S. Seitz
Solution: smooth first

• To find edges, look for peaks in \(\frac{d}{dx}(f \ast g) \)

Source: S. Seitz
Noise in 2D

Noisy Input

Ix via [-1,01]

Zoom

Source: D. Fouhey
Noise + Smoothing

Smoothed Input \(I_x \text{ via } [-1,01] \) Zoom

Source: D. Fouhey
How many convolutions here?

can we reduce this?
Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \ast f) = \left(\frac{\partial}{\partial x} h\right) \ast f$$

This saves us one operation:

$$\frac{\partial}{\partial x} h$$

$$\left(\frac{\partial}{\partial x} h\right) \ast f$$
Derivative of Gaussian filter

\[* \begin{bmatrix} 1 & -1 \end{bmatrix} = \]
Derivative of Gaussian filter

Which one finds horizontal/vertical edges?
Compare to classic derivative filters

Prewitt: \(M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \); \(M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \)

Sobel: \(M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \); \(M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \)

Roberts: \(M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \); \(M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \)
Filtering: practical matters

What is the size of the output?

(MATLAB) `filter2(g, f, shape)` or `conv2(g,f,shape)`

- `shape` = ‘full’: output size is sum of sizes of f and g
- `shape` = ‘same’: output size is same as f
- `shape` = ‘valid’: output size is difference of sizes of f and g

Pytorch `conv2d` ‘valid’ or ‘same’

Source: S. Lazebnik
Practical matters

What about near the edge?

• the filter window falls off the edge of the image
• need to extrapolate
• methods:
 – clip filter (black)
 – wrap around (circular)
 – copy edge
 – reflect across edge

Source: S. Marschner