1. **Where Could We Use Graph Neural Network** In this problem, we aim to find out where using a graph is an appropriate way to solve the problems highlighted below. Answer with True/False on where you think a GNN should be applied.

A. We want to do image segmentation (i.e., predict what class of object is shown in each pixel.)

 Solution: CNN, since ConvNets are typically a good match for image processing. (You could technically use a GNN too since, as shown in Q3, you could think of images as graphs, but that’s less common.)

B. We want to predict what is the likely play of a football team. Your data consists of the coordinate position of each player at each timestep.

 Solution: probably a combination of RNN and GNN (i.e., a recurrent RNN); a GNN will be useful to model how team players interact, and the recurrent portion will capture how players move over time.

C. We want to find influential papers by identifying citation patterns between different papers. Your data consists of a list of which papers cite which other papers.

 Solution: GNN, since we want to model connections between papers, and the connections have not fixed spatial structure.
2. Graph Neural Network Forward Pass

Consider the following undirected graph G:

![Graph Diagram]

In this problem, we are going to work with an undirected graph without edge weights. We are imposing these limitations to make the problem simpler and to let us focus on the core ideas behind the forward pass. In practice, edges can be directed and have weights.

When a GNN layer is applied to a graph, it produces a new graph with the same topology as the original graph but with (potentially) different values in the nodes and the edges. After passing a graph through a number of these GNN layers, we can use the graph embedding for a variety of downstream tasks. In this problem, we will walk through a simplified forward pass of graph neural networks to help build concrete intuition for how GNNs operate (and so we will not be thinking about the downstream tasks). We will gradually add layers of complexity to the forward pass to allow GNNs to become more expressive.

To begin with, let us assign vectors v_A, v_B, v_C, v_D to nodes A, B, C, D respectively. Let:

\[
v_A = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_B = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, v_C = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, v_D = \begin{bmatrix} -3 \\ 2 \end{bmatrix}
\]

We will define our update function for our nodes as follows:

\[
f(v_i) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} v_i
\]

In practice, we could have different update functions at different layers of our network (and more generally, these update functions are learnable). For the sake of this problem, we will reuse the same update function at every layer of the network.

For example, to produce the node value at timestep $t + 1$, we must apply the update rule to the node from timestep t, and so we have:

\[
v_i^{(t+1)} = f(v_i^{(t)})
\]

Thus, to compute $v_A^{(1)}$ and $v_A^{(2)}$, we have:

\[
v_A^{(1)} = f(v_A^{(0)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 13 \\ 6 \end{bmatrix}
\]

\[
v_A^{(2)} = f(v_A^{(1)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 13 \\ 6 \end{bmatrix} = \begin{bmatrix} 69 \\ 58 \end{bmatrix}
\]
In general, to produce the graph at timestep $t + 1$, we will apply the update rules to each node in our graph from timestep t. Suppose that at timestep 0, the graph G is as above. Let us denote the state of G at timestep t by $G^{(t)}$.

(a) Using the updates rule above, compute $G^{(1)}$ and $G^{(2)}$.

Solution:

$$f_{v_{A}}(v_{A}^{(0)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 13 \\ 6 \end{bmatrix}$$

$$f_{v_{A}}(v_{A}^{(1)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 13 \\ 6 \end{bmatrix} = \begin{bmatrix} 69 \\ 58 \end{bmatrix}$$

$$f_{v_{B}}(v_{B}^{(0)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$$

$$f_{v_{B}}(v_{B}^{(1)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ -2 \end{bmatrix} = \begin{bmatrix} 11 \\ 26 \end{bmatrix}$$

$$f_{v_{C}}(v_{C}^{(0)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 10 \end{bmatrix}$$

$$f_{v_{C}}(v_{C}^{(1)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 16 \\ 10 \end{bmatrix} = \begin{bmatrix} 98 \\ 74 \end{bmatrix}$$

$$f_{v_{D}}(v_{D}^{(0)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -10 \end{bmatrix}$$

$$f_{v_{D}}(v_{D}^{(1)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -10 \end{bmatrix} = \begin{bmatrix} -47 \\ -6 \end{bmatrix}$$

(b) We can visualize two iterations of our current update rule with a diagram such as the following:

From this diagram, it is clear to see that our GNN is not leveraging the topology of our graph in its forward pass. The way we overcome this is through message passing. In practice, we can apply message passing to both nodes and edges. In this problem, we will only consider applying message passing to nodes to simplify things. Let us consider the new update rule for nodes:

$$v_{i}^{(t+1)} = f_{v}(v_{i}^{(t)}) + \sum_{v_{j} \in N(v_{i})} f_{v}(v_{j}^{(t)})$$

Where $N(v_{i})$ is the set of neighbors of node v_{i}.

Find $G^{(1)}$ under this new update rule.

Solution: (Only v_{A} is shown, but similar formulas can be applied to the other nodes. Depending on
the node’s number of neighbors, the sum will have 2 or 3 terms (# neighbors + 1)).

\[v_A^{(1)} = f_v(v_A^{(0)}) + f_v(v_B^{(0)}) = \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 20 \\ 4 \end{bmatrix}, \]

(c) Draw a diagram like the one in part b reflecting two iterations of our new update rule.

Solution:

(d) Suppose the shortest path between nodes \(u \) and \(v \) in a graph traverses \(K \) edges. How many iterations of updates must we do for information from node \(u \) to reach node \(v \)? (Hint: Consider the network diagram you made in part c)

Solution: From looking at the network diagram, we can see that it will take \(K \) iterations for these nodes to communicate with each other.

(e) If two nodes are connected, they will eventually be able to communicate with each other given enough layers. However, if we want to be able to apply the same network architecture to an arbitrary graph, then we have no guarantee that two connected nodes will be able to communicate with each other with our architecture (such as if we have \(L \) layers but we are now processing a graph which has two nodes separated by \(L + 1 \) edges). One approach to fixing this issue is to add a dummy node to our graph that is maximally connected to all of the original nodes in the graph. We can think of this node as representing the global state of the graph. Draw a diagram like the one from part c reflecting the addition of this new dummy node. How does this solve our problem?

Solution:
This solves our problem by allowing an arbitrary pair of nodes to communicate with each other in at most 2 layers.

(f) Although we are thinking about the global state as a "node", in practice we often think of it as a separate entity from the graph, and we allow it to have dimension different from that of our nodes. Correspondingly, we allow our GNN to have a separate update function for the global state, often written at f_U. Since we now have two separate update functions, our diagram from the last part will look different. To make things simpler, let us assume that the nodes have the same dimension as the global state ($U \in \mathbb{R}^2$). Write an update rule for the global state.

Solution: The actual update rule is a design choice. Some possibilities are:

\[
U^{(t+1)} = f_U(U^{(t)}) + \sum_{v_i \in G} f_v(v_i^{(t)})
\]

\[
U^{(t+1)} = f_U(U^{(t)}) + f_v \left(\sum_{v_i \in G} v_i^{(t)} \right)
\]

\[
U^{(t+1)} = f_U(U^{(t)}) + \sum_{v_i \in G} v_i^{(t)}
\]

\[
U^{(t+1)} = f_U \left(U^{(t)} + \sum_{v_i \in G} v_i^{(t)} \right)
\]

(g) Draw a diagram like the one in part c reflecting two iterations of our network using f_v and the update rule you wrote in the previous part.

Solution: Depending on the update rule in the previous part, the resulting diagram will look different. Here is the diagram for the update rule:

\[
U^{(t+1)} = f_U(U^{(t)}) + \sum_{v_i \in G} f_v(v_i^{(t)})
\]
3. **Graph Neural Network Conceptual Questions** Diagrams in this question were taken from https://distill.pub/2021/gnn-intro. This blog post is an excellent resource for understanding GNNs and contains interactive diagrams:

A. You are studying how organic molecules break down when heated. For each molecule, you know the element and weight of each atom, which other atoms its connected to, the length of the bond the atoms, and the type of molecule it is (carbohydrate, protein, etc.) You are trying to predict which bond, if any, will break first if the molecule is heated.

(a) How would you represent this as a graph? (What are the nodes, edges, and global state representations? Is it directed or undirected?) **Solution:** Each atom is a node with the element and weight as its value. There is an undirected edge between each pair of bonded atoms, with the bond length as the value. The global representation includes the molecule type.

(b) How would you use the outputs of the last GNN layer to make the prediction? **Solution:** This is a classification problem across edges. One reasonable approach would be to softmax across logits produced by each edge as well as one logit produced by the global state which represents the option that no edges break.

(c) How would you encode the node representation? **Solution:** Use a learned embedding for the element ID. Concatenate this with the atom weight. If atom weights are large, you should normalize the weights first.

![Image](https://example.com/image.png)

Figure 1: Images as Graphs

B. There are analogs of many ConvNet operations which can be done with GNNs. As Figure 1 illustrates, we can think of pixels as nodes and pixel adjacencies as similar to edges. Graph-level classification tasks, for instance, are analogous to image classification, since both produce a single, global prediction. Fill out the rest of the table. (Not all rows have a perfect answer. The goal is to think about the role an operation serves in one architecture and whether you could use a technique which serves a similar role in the other architecture.)
<table>
<thead>
<tr>
<th>CNN</th>
<th>GNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image classification</td>
<td>Graph-level prediction problem</td>
</tr>
<tr>
<td>Solution: Semantic segmentation (classifying what object is present at each pixel)</td>
<td>Node-level prediction problem</td>
</tr>
<tr>
<td>Color jitter data augmentation (adjusting the color or brightness of an image)</td>
<td>Solution: Jittering node values</td>
</tr>
<tr>
<td>Image flip data augmentation</td>
<td>Solution: A flip preserves graph values and connectivity, but changes its spatial orientation. Graphs don’t have an orientation, so they don’t need an analog. More generally, image flips augment the data by exploiting invariances in the task (i.e. an image’s class shouldn’t change if you flip it), and there might be similar invariances in graph problems.</td>
</tr>
<tr>
<td>Dropout</td>
<td>Solution: Zero some nodes (or edges) at one layer of the network</td>
</tr>
<tr>
<td>Zero padding edges</td>
<td>Solution: Zero padding addresses the fact that conv nets require that every pixel has the same number of neighbors. Graphs don’t need an equivalent since they already handle variable numbers of neighbors</td>
</tr>
<tr>
<td>ResNet skip connections</td>
<td>Solution: Add a skip connection to the update - i.e. $v_{t+1} = v_{t} + UPDATE(v_{t})$</td>
</tr>
<tr>
<td>Blurring an image</td>
<td>Solution: Averaging node values with neighbors</td>
</tr>
<tr>
<td>Solution: Image inpainting (filling in a missing section of an image)</td>
<td>Predicting missing values of nodes</td>
</tr>
<tr>
<td>Solution: Only using kernels with the same value for each index except the center (explanation: in GNNs, you typically run the same update function on each neighbor (or often first sum or average the neighbors, then run the update fn on the result). This means all neighbors are treated the same. CNN kernels, in contrast, have different values for at different spatial positions, so a left-side neighbor and a right-side neighbor don’t get the same update. The CNN equivalent to edge-order invariance is to use the same value for each index in the kernel. The center pixel can still be different, since this corresponds to the current node value, which updated separately from the neighboring nodes.</td>
<td>Edge-order invariance - i.e. neighboring nodes/edges are a set with no ordering</td>
</tr>
</tbody>
</table>

C. If you’re doing a graph-level classification problem, but node values are missing for some of your graph nodes, how would you use this graph for prediction? **Solution:** There are multiple strategies
(including all of the strategies used in other ML problems with missing values), including creating a special ‘missing’ token or filling the node with the mean value, and training with dropout on the input. In graphs where individual nodes don’t matter much (e.g. point clouds), it may be appropriate to remove the node and associated edges entirely.

D. Consider the graph neural net architecture shown in Figure 2. It includes representations of nodes \((V_n)\), edges \((E_n)\), and global state \((U_n)\). At each timestep, each node and edge is updated by aggregating neighboring nodes/edges, as well as global state. The global state is the updated by pooling all nodes and edges. For more details on the architecture setup, see https://distill.pub/2021/gnn-intro/#passing-messages-between-parts-of-the-graph.

![Figure 2: GNN architecture](image)

(a) If we double the number of nodes in a graph which only has node representations, how does this change the number of learned weights in the graph? How does it change the amount of computation used for this graph if the average node degree remains the same? What if the graph is fully connected? (Assume you are not using a global state representation). **Solution:** The number of learned weights remains the same. If the node degree remains the same, computation will also double. If the graph is fully connected, computation scales by a factor of 4 \((2x \text{ nodes} \times 2x \text{ neighbors to aggregate per timestep})\). (Here, we’re thinking about how computational complexity scales with nodes and edges. There are some fixed costs which don’t scale, so it won’t be quite 2x or 4x in practice.)

(b) Where in this network are learned weights incorporated? **Solution:** The update functions include learned weights.

(c) The diagram provided shows undirected edges. How would you incorporate directed edges? **Solution:** There are multiple strategies here, but one reasonable option is that within a node’s update function, use different weights to incorporate incoming and outgoing edges and nodes. (Incoming edges are edges pointing toward the node, and outgoing edges have the arrows away from the node.) In some cases, it might make sense to use only incoming or outgoing nodes/edges for the update.

(d) The differences between an MLP and a RNN include (a) weights are shared between timesteps and (b) data is fed in one timestep at a time. How would you make an MLP-like GNN? What about an RNN-like GNN? **Solution:** An MLP-like GNN uses separate weights at each layer. The RNN-like GNN uses the same weights at each timestep. If data is sequential, then at each timestep concatenate the node/edge values from your data at time \(t\) with the hidden node/edge values for that timestep.

E. Let’s say you run a large social network and are trying to predict whether individuals in the network
like a particular ad. Each individual is represented as a node in the graph, and we are doing a node-level prediction problem. You have labels for around half of the people in the network and are trying to predict the other half. Unlike a traditional ML problem, where there are many independent training points, here we have a single social network. How would you do prediction on this graph?

Solution: You can think about each node’s classification as a separate training point. Split the nodes for which you have labels into train and validation sets, then train on the training nodes only. During training, we keep validation and unlabeled nodes in the graph (this is fine, since we aren’t using their labels). Use the validation set to do model selection, then predict on the nodes without labels.

F. (Optional) Play around with different GNN design choices in the GNN playground at https://distill.pub/2021/gnn-intro/#gnn-playground. Which design choices lead to the best AUC?

Contributors:

- Matthew Lacayo.
- Olivia Watkins.
- Jerome Quenum.
- Anant Sahai.
- Anrui Gu.