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Name and SID of the person to your right:

Name and SID of the person in front of you:
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Section 0: Pre-exam questions (5 points)

1. Honor Code: Please copy the following statement in the space provided
below and sign your name below. (1 point or −∞)
As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will
follow the rules and do this exam on my own.

2. What’s your favorite 182 topic? (4 points)

Do not turn this page until the proctor tells you to do so. You can work on Section 0 above before time starts.
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3. Depthwise Separable Convolutions (10 points)
Depthwise separable convolutions are a type of convolutional operation used in deep learning for image
processing tasks. Unlike traditional convolutional operations, which perform both spatial and channel-wise
convolutions simultaneously, depthwise separable convolutions decompose the convolution operation into
two separate operations: Depthwise convolution and Pointwise convolution.

This can be viewed as a low-rank approximation to a traditional convolution. For simplicity, throughout this
problem, we will ignore biases while counting learnable parameters.

(a) (5 pts) Suppose the input is a three-channel 224× 224-resolution image, the kernel size of the convo-
lutional layer is 3× 3, and the number of output channels is 4.

Figure 1: Traditional convolution.

What is the number of learnable parameters in the traditional convolution layer?

Final Exam, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 2



Final Exam @ 2023-05-07 21:52:01-07:00

PRINT your name and student ID:

(b) (5 pts) Depthwise separable convolution consists of two parts: depthwise convolutions (Fig.2) followed
by pointwise convolutions (Fig.3). Suppose the input is still a three-channel 224 × 224-resolution
image. The input first goes through depthwise convolutions, where the number of output channels is
the same as the number of input channels, and there is no “cross talk” between different channels.
Then, this intermediate output goes through pointwise convolutions, which is basically a traditional
convolution with the filter size being 1× 1. Assume that we have 4 output channels.

Figure 2: Depthwise convolution. Figure 3: Pointwise convolution

What is the total number of learnable parameters of the depthwise separable convolution layer
which consists of both depthwise and pointwise convolutions?
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4. Weight Decay and Adam (11 points)
Because Adam can use different learning rates for different weights, it can have different implicit regulariza-
tion behavior than traditional SGD or SGD with momentum. Consequently, it can interact differently when
combined with other approaches for explicit regularization — even if those other approaches are equivalent
with traditional SGD.

Two such regularization approaches are putting an L2 penalty on weights in the loss function itself (in the
style of explicit ridge regularization) and alternatively, adding a weight-decay term during learning updates.
For a simplified variant of Adam (without momentum), we have:

• L2 regularization can be expressed as: θt+1 ← θt − αMt(∇ft(θt) + λwθt)

• Weight decay can be expressed as: θt+1 ← (1− λr)θt − αMt∇ft(θt)

Here Mt denotes the adaptive term in the Adam update step — think of this as a diagonal matrix.

(a) (6 pts) When will the updates for L2 regularization and weight decay be identical?
(Hint: your answer should involve things like α, λw, λr, and Mt in some way.)

(b) (5 pts) Where should you add λrθt−1 to the Adam code below to get explicit weight decay?

Algorithm 1 Adam Optimizer (without bias correction)

1: Given α = 0.001, β1 = 0.9, β2 = 0.999
2: Initialize time step t← 0, parameter θt=0 ∈ Rn, mt=0 ← 0, vt=0 ← 0
3: Repeat
4: t← t+ 1
5: ∇ft(θt−1)← SelectBatch(θt−1)
6: gt ← ∇ft(θt−1) + (A)
7: mt ← β1mt−1 + (1− β1)(gt + (B) )
8: vt ← β2vt−1 + (1− β2)g2t + (C)
9: θt ← θt−1 − (α · mt√vt + (D) )

10: Until the stopping condition is met

○ A on line 6 above
○ B on line 7 above
○ C on line 8 above
○ D on line 9 above
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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5. Multiplicative Regularization beyond Dropout (15 points)
In dropout, we get a regularizing effect by multipling the activations of the previous layer by iid coin tosses
to randomly zero out many of them during each SGD update. Here, we will consider a linear-regression
problem but instead of randomly multiplying each input feature with a 0 or a 1 during SGD updates, we
will multiply each feature of our input with an iid random sample of a normal distribution with mean µ and
variance σ2. In other words, we perform the elementwise product R�X , where R is a matrix where every
iid entry Rij ∼ N (µ, σ2) and � represents elementwise multiplication.

It turns out that the expected training loss

L(w) = ERij∼N (µ,σ2)

[
||y − (R�X)w||22

]
can be put in the form

L(w) = ||y − (A) Xw||22 + (B) ||Γw||22

where Γ = (diag(X>X))1/2.

What are (A) and (B)?

Select one choice for (A):

○ µ

○ 2µ

○ µ
2

○ σ

○ 2σ

○ σ
2

Select one choice for (B):

○ µ2

○ 2µ2

○ µ2

2

○ σ2

○ 2σ2

○ σ2

2

Show some work below to justify your choices. Correct answers with incorrect or no supporting work will
not receive full credit.

(Hint: As the problem title suggests, this should look similar to the derivation of dropout regularization you
saw in the homework.)

(Further Hint: You might find it helpful to think about the case µ = 1 and σ2 = 0 to help you pick as well
as µ = 0 and σ2 =∞.)
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6. Tensor Rematerialization (23 points)
You want to train a neural network on a new chip designed at UC Berkeley. Your model is a 10 layer network,
where each layer has the same fixed input and output size of s. The chip your model will be trained on is
specialized for model evaluation, and thus can run forward passes very fast. However, it is severely memory
constrained and can only fit 2s activations in memory (in addition to the inputs and other optimizer state).

To train despite this memory limitation, your friend suggests using a training method called tensor remateri-
alization. She proposes using SGD with a batch size of 1, and only storing the activations of every 5th layer
during an initial forward pass to evaluate the model. During backpropagation, she suggests recomputing ac-
tivations on-the-fly for each layer by loading the relevant last stored activation from memory, and rerunning
forward through layers up till the current layer.

Figure 4 illustrates this approach. Activations for Layer 5 and Layer 10 are stored in memory from an
initial forward pass through all the layers. Consider when weights in layer 7 are to be updated during
backpropagation. To get the activations for layer 7, we would load the activations of layer 5 from memory,
and then run them through layer 6 and layer 7 to get the activations for layer 7. These activations can then
be used (together with the gradients from upstream) to compute the gradients to update the parameters of
Layer 7, as well as get ready to next deal with layer 6.

Figure 4: Tensor rematerialization in action - Layer 5 and Layer 10 activations are stored in memory along with the
inputs. Activations for other layers are recomputed on-demand from stored activations and inputs.

(a) (10 pts) Assume a forward pass of a single layer is called a fwd operation. How many fwd operations
are invoked when running a single backward pass through the entire network? Do not count the
initial forward passes required to compute the loss, and don’t worry about any extra computation
beyond activations to actually backprop gradients.
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(b) (5 pts) Assume that each memory access to fetch activations or inputs is called a loadmem operation.
How many loadmem operations are invoked when running a single backward pass?

(c) (8 pts) Say you have access to a local disk which offers practically infinite storage for activations and
a loaddisk operation for loading activations. You decide to not use tensor rematerialization and
instead store all activations on this disk, loading each activation when required. Assuming each fwd
operation takes 20ns and each loadmem operation (which loads from memory, not local disk) takes
10ns for tensor rematerialization, how fast (in ns) should each loaddisk operation be to take the
same time for one backward pass as tensor rematerialization? Assume activations are directly
loaded to the processor registers from disk (i.e., they do not have to go to memory first), only one
operation can be run at a time, ignore any caching and assume latency of any other related operations
is negligible.
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7. Fine-tuning Large Models for Multiple Tasks (20 points)
In the context of fine-tuning large pre-trained foundation models for multiple tasks, consider the following
three scenarios:

(1) Using a foundation model with different soft prompts tuned per task, while keeping the main model
frozen. Assume prompts have a token length of 5.

(2) Using a foundation model held frozen, with task-specific low-rank adapters (i.e. we trainA,B matrices
to allow us to replace the relevant weight matrix W with W +AB where A is initialized to zero andB
is randomly initialized) fine-tuned for the attention-parameters (key, value, and query weight matrices)
in the top four layers.

(3) Full-fine tuning of the entire model using the data from the multiple target tasks simultaneously.

You can assume that the foundation model has 13B parameters with a max context length of 512, hidden_dim
5120, Multi-head-attention with 40 heads and 40 layers, trained with a dataset consisting of 1T tokens.

(a) (5 pts) Which of these scenarios is most likely to lead to catastrophic forgetting? (select one)
○ Scenario 1
○ Scenario 2
○ Scenario 3
○ None of the above

(b) (5 pts) What is the total number of trainable parameters using soft prompt tuning?

(c) (4 pts) Suppose we decide to use meta-learning to get better initializations for the A and B matrices to
be used for task-specific low-rank adaptation.
Assume you have a large family of tasks with lots of relevant training data. Which meta-learning
approach do you think will be more practically effective given this setting: (select one)
○ MAML with a number of inner iterations k of around 10. (Recall that MAML requires you

to compute the gradients to the initial condition before the inner training iterations through the
training iterations but on held-out test data.)

○ REPTILE using a large batch of task-specific data at a time. (Recall that REPTILE uses the
net movement from the initial condition of this meta-iteration as an approximation for the meta-
gradient and just moves the meta-learned initial-condition a small step in that direction.)

(d) (6 pts) To better defend against catastrophic forgetting during your meta-learning approach in the
previous part, which of the following would you consider doing: (mark all that apply)
� During meta-learning, include occasional gradient updates to A and B on random subsets of the

original training data with the original self-supervised training loss.
� During meta-learning, include occasional gradient updates to A and B using the original self-

supervised training loss but on the new training data from the training family of tasks.
� After your meta-learning updates are done, reinitialize the A matrices to zero before actually

fine-tuning on new tasks.
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8. Analyzing Distributed Training (12 points)
For real-world models trained on lots of data, the training of neural networks is parallelized and accelerated
by running workers on distributed resources, such as clusters of GPUs. In this question, we will explore
three popular distributed training paradigms:

All-to-All Communication: Each worker maintains a copy of the model parameters (weights) and pro-
cesses a subset of the training data. After each iteration, each worker communicates with every other worker
and updates its local weights by averaging the gradients from all workers.

Parameter Server: A dedicated server, called the parameter server, stores the global model parameters.
The workers compute gradients for a subset of the training data and send these gradients to the parameter
server. The server then updates the global model parameters and sends the updated weights back to the
workers.

Ring All-Reduce: Arranges n workers in a logical ring and updates the model parameters by passing
messages in a circular fashion. Each worker computes gradients for a subset of the training data, splits
the gradients into n equally sized chunks and sends a chunk of the gradients to their neighbors in the ring.
Each worker receives the gradient chunks from its neighbors, updates its local parameters, and passes the
updated gradient chunks along the ring. After n−1 passes, all gradient chunks have been aggregated across
workers, and the aggregated chunks are passed along to all workers in the next n−1 steps. This is illustrated
in Figure 5.

Figure 5: Example of Ring All-Reduce in a 3 worker setup. Source: Mu Et. al, GADGET: Online Resource Opti-
mization for Scheduling Ring-All-Reduce Learning Jobs
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For each of the distributed training paradigms, fill in the total number of messages sent and the size
of each message. Assume that there are n workers and the model has p parameters, with p divisible by n.

Number of Messages Sent Size of each message

All-to-All p

Parameter Server 2n

Ring All-Reduce n(2(n− 1))
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9. Debugging Transformers (24 points)
You’re implementing a Transformer encoder-decoder model for document summarization (a sequence-to-
sequence NLP task). You write the initialization of your embedding layer and head weights as below:

1 class Transformer(nn.Module):
2 def __init__(self, n_words, max_len, n_layers,
3 d_model, n_heads, d_ffn, p_drop):
4 super().__init__()
5 self.emb_word = nn.Embedding(n_words, d_model)
6 self.emb_pos = nn.Embedding(max_len, d_model)
7
8 # Initialize embedding layers
9 self.emb_word.weight.data.normal_(mean=0, std=1)

10 self.emb_pos.weight.data.normal_(mean=0, std=1)
11
12 self.emb_ln = nn.LayerNorm(d_model)
13 self.encoder_layers = nn.ModuleList([
14 TransformerLayer(False, d_model, n_heads, d_ffn, p_drop)
15 for _ in range(n_layers)
16 ])
17 self.decoder_layers = nn.ModuleList([
18 TransformerLayer(True, d_model, n_heads, d_ffn, p_drop)
19 for _ in range(n_layers)
20 ])
21 self.lm_head = nn.Linear(d_model, n_words)
22 # Share lm_head weights with emb_word
23 self.lm_head.weight = self.emb_word.weight
24 self.criterion = nn.CrossEntropyLoss(ignore_index=-100)

After training this model, you compare your implementation with your friend’s by looking at the loss curves:
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Model 1

(a) Your model’s loss - 23.4
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Steps

6
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ss

Model 2

(b) Your friend’s model’s loss - 6.1

Figure 6: Comparing your model’s loss vs your friend’s model’s loss. Your model is doing significantly worse.

Your friend suggests that there’s something wrong with how the head gets initialized. Identify the bug in
your initialization, fix it by correcting the buggy lines, and briefly explain why your fix should work.
Hint: remember that d_model is large in transformer models.

Hint: your change needs to impact line 9 somehow since that is where the head is initialized.
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The bug: (brief description)

The fix (code): (Just show anything you change and/or add to the code.)

Why the fix should work: (brief explanation)
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10. Diffusion Fun: To Infinity and Beyond! (28 points)

(a) (8 pts) One of the critical parts of being able to train a denoising diffusion model is to be able to quickly
sample zt and zt+1 given z0 where z0 is our initial data point. Gaussian diffusions make this easy to
do.
Suppose that we are working in discrete time t = 1, 2, . . . and we know that the conditional variance
for the one-step forward diffusion at time t is given by βt. This means that in terms of conditional
distributions, we have:

q(zt|zt−1) = N (zt;
√

1− βt zt−1︸ ︷︷ ︸
mean

,

covariance︷︸︸︷
βtI )

What is αt so that the conditional distribution of zt given z0 is just Gaussian with a known mean
and variance as follows:

q(zt|z0) = N (zt;
√
αtz0, (1− αt)I)

Your answer should involve the βi values.

(b) (8 pts) Notice that the forward diffusion looks similar wherever you start. Suppose we wanted to
quickly generate a sample of zτ given zt where τ > t and both are integers.
What is γτ,t so that the conditional distribution of zτ given zt is just Gaussian with a known mean
and variance as follows:

q(zτ |zt) = N (zτ ;
√
γτ,tzt, (1− γτ,t)I)

Your answer should just involve the αt and ατ values.
Hint: Think about the means and leverage the previous part.
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(c) (12 pts) At every step of the forward Gaussian diffusion, the “signal” of the original example gets
weaker while the amount of “noise” gets higher. Consider the case of scalar z for simplicity. If the
original z0 comes from a zero-mean distribution with variance 1, then αt represents the signal energy
and 1− αt represents the noise energy. The ratio ξt = αt

1−αt is the signal-to-noise ratio and decreases
monotonically from +∞ at t = 0 where α0 = 1 down to α∞ = 0 when t = +∞ and the signal has
been completely lost.
However, this means that we can forget about discrete time entirely and just think about the continuous
quantity η = 1

ξ where η naturally ranges from 0 to∞. We can consider z̃(η) to be such that z̃(0) = z0

and z̃(η) = zt(η) where t(η) is whatever hypothetical t satisfies 1−αt
αt

= η.
Given 0 < η1 < η2 < ∞, show how you would generate a sample of the pair z̃(η1), z̃(η2) given
access to z0 and two iid standard normal random variables V1, V2 so that these two z̃(η1), z̃(η2)
are distributed in a manner that is compatible with a forward diffusion process sampled at two
distinct times where the noise-to-signal ratios are η1 and η2 respectively.
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11. Variational Information Bottleneck (26 points)
In class, you saw tricks that we introduced in the context of Variational Auto-Encoders to allow ourselves
to get the latent space to have a desirable distribution. It turns out that we can use the same spirit even with
tasks different than auto-encoding.

Consider a prediction task that maps an input source X to a target Y through a latent variable Z, as shown
in the figure below. Our goal is to learn a latent encoding that is maximally useful for our target task, while
trying to be close to a target distribution r(Z).

Figure 7: Overview of a VIB that maps an input X to the target Y through a latent variable Z (top). We use deep
neural networks for both the encoder and task-relevant “decoder.”

(a) (8 pts) Assume that we decide to have the encoder network (parameterized by θe) take both an input x
and some independent randomness V to emit a random sample Z in the latent space drawn according
to the Gaussian distribution pθe(Z|x).
For this part, assume that we want Z to be a scalar Gaussian (conditioned on x) with mean µ and
variance σ2 with the encoder neural network emitting the two scalars µ and σ as functions of x.
Assume that V is drawn from iid standard N (0, 1) Gaussian random variables.
Draw a block diagram with multipliers and adders showing how we get Z from µ and σ along
with V .
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(b) (6 pts) Assume that our task is a classification-type task and the “decoder” network (parameterized by
θd) emits scores for the different classes that we run through a softmax to get the distribution qθd(y|z)
over classes when the latent variable takes value z.
To train our networks using our N training points, we want to use SGD to approximately minimize the
following loss:

L =
1

N

N∑
n=1

Ez∼pθe (z|xn)

log qθd(yn|z)︸ ︷︷ ︸
task loss

+ β

latent regularizer︷ ︸︸ ︷
DKL(pθe(Z|xn)||r(Z)) (1)

where the yn is the training label for input xn and during training, we draw fresh randomness V each
time we see an input, and we set r(Z) to be a standard Gaussian N (0, 1).
If we train using SGD treating the random samples of V as a part of the enternal input, select all the
loss terms that contribute (via backprop) to the gradients used to learn the encoder and decoder
parameters:
For encoder parameters θe: � task loss � latent regularizer
For decoder parameters θd: � task loss � latent regularizer

(c) (4 pts) Let’s say we implemented the above information bottleneck for the task of MNIST classifica-
tion. Which of the curves in Figure 8 below best represents the trend of the validation error (on
held-out data) with increasing regularization strength parameter β? (select one)

○(a) ○(b) ○(c) ○(d)

Figure 8: Validation error (on held-out data) profiles for different values of β.
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(d) (8 pts) Let’s say we implemented the above information bottleneck for the task of MNIST classifica-
tion for three digits, and set the dimension of the latent space Z to 2. Figure 9 below shows the latent
space embeddings of the input data, with different symbols corresponding to different class labels, for
three choices of β ∈ {10−6, 10−3, 100}. Now answer these two questions:

i. Guess the respective values of β used to generate the samples. (select one for each fig)
(HINT: Don’t forget to look at the axis labels to see the scale.)
(a) ○β = 10−6 ○β = 10−3 ○β = 100

(b) ○β = 10−6 ○β = 10−3 ○β = 100

(c) ○β = 10−6 ○β = 10−3 ○β = 100

ii. Which of the three experiments in Figure 9 results in a better latent space for the prediction
task? (select one)

○(a) ○(b) ○(c)

Figure 9: MNIST VIB with 2D latent space.
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12. LayerNorm and Transformer Models (63 points)
Consider a simplified formulation of LayerNorm written in PyTorch:

1 def f(x):
2 mu = x.mean(dim=-1)
3 z = x - mu
4 return z
5
6 def h(z):
7 sigma = (z ** 2).mean(dim=-1).sqrt()
8 y = z / sigma
9 return y

10
11 def LN(x):
12 return h(f(x))

Here the input x ∈ Rd is a vector [x1, x2, . . . , xd]
> and the output y ∈ Rd is a vector [y1, y2, . . . , yd]

> of
the same shape.

For the demeaning function f , we have f(x) = z, with x, z ∈ Rd. Given the upstream gradient g(z) :=

(
∂L
∂z

)> = [
∂L
∂z1

,
∂L
∂z2

, . . . ,
∂L
∂zd

]> ∈ Rd, we derive the backpropagation of f here for your convenience.

Since z = f(x) = x− µ1 and µ = 1
d

∑d
i=1 xi =

1

d
1>x, we obtain in vector notation:

z = (I− 1

d
11>)x (2)

The Jacobian of f is thus:

∂z

∂x
= I− 1

d
11> (3)

The downstream gradient g(x) := (
∂L
∂x

)> = [
∂L
∂x1

,
∂L
∂x2

, . . . ,
∂L
∂xd

]> after backpropagation is thus:

g(x) = (
∂L
∂z

∂z

∂x
)> = (I− 1

d
11>)g(z) (4)

Notice, as expected, any “DC” component of the upstream gradient that wants to increase or decrease all the
components by the same amount will not pass backward through the mean-removal function.
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(a) (6 pts) For demeaning function f , suppose we linearly scale the input x′ = ax, where a > 0; suppose

the upstream gradient g(z) remains unchanged. Let g(x′) := [
∂L
∂x′1

,
∂L
∂x′2

, . . . ,
∂L
∂x′d

]>. Which two of

the following statements are true?

� ‖f(x′)‖2 = ‖f(x)‖2
� ‖f(x′)‖2 = a‖f(x)‖2
� ‖f(x′)‖2 =

1

a
‖f(x)‖2

� ‖g(x′)‖2 = ‖g(x)‖2
� ‖g(x′)‖2 = a‖g(x)‖2
� ‖g(x′)‖2 =

1

a
‖g(x)‖2

(b) (15 pts) For the normalizing function h, we have h(z) = y, where z,y ∈ Rd. Given upstream gradient

g(y) := [
∂L
∂y1

,
∂L
∂y2

, . . . ,
∂L
∂yd

]> ∈ Rd, derive the downstream gradient g(z) := [
∂L
∂z1

,
∂L
∂z2

, . . . ,
∂L
∂zd

]>,

as a function of d, g(y) and z. Recommended notation: denote variable sigma by σ.
Hint: To solve this question, it is easier to employ vector arithmetic and vector calculus. We strongly
recommend expressing the normalizing function h in vector form as a first step. Alternatively, you
could compute elementwise partial derivatives and simplify them, though this approach is more in-
volved.

Hint: For a vector u, the following relationship holds:
∂‖u‖2
∂u

=
u>

‖u‖2
. You may use this without

proof in this question.
Hint: To partially check your work, which directional component in g(y) shouldn’t be able to pass
through this backprop through a normalization function?
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(c) (6 pts) For normalizing function h, suppose we linearly scale the input z′ = az, where a > 0; sup-

pose upstream gradient g(y) is unchanged and let g(z′) := [
∂L
∂z′1

,
∂L
∂z′2

, . . . ,
∂L
∂z′d

]>. Which two of the

following choices are true?

� ‖h(z′)‖2 = ‖h(z)‖2
� ‖h(z′)‖2 = a‖h(z)‖2
� ‖h(z′)‖2 =

1

a
‖h(z)‖2

� ‖g(z′)‖2 = ‖g(z)‖2
� ‖g(z′)‖2 = a‖g(z)‖2
� ‖g(z′)‖2 =

1

a
‖g(z)‖2

(d) (9 pts) Consider the code below for Transformer layers, with dropouts omitted for simplicity. Here
the LN layer is defined as above, which is layer normalization without eps and affine transformation
parameterized β and γ. There are two types described below with both sharing the same constructor
code.

1 # Constructor
2 self.self_attn = MultiheadAttention(d_model, n_heads)
3 self.self_attn_ln = LN
4 self.fc1 = nn.Linear(d_model, d_ffn)
5 self.fc2 = nn.Linear(d_ffn, d_model)
6 self.ffn_ln = LN
7
8 # Forward (Type 1)
9 residual = x

10 x = self.self_attn(x, x, x, padding_mask, causal=False)
11 x = self.self_attn_ln(x + residual) # Normalize after
12 residual = x
13 x = self.fc2(F.relu(self.fc1(x)))
14 x = self.ffn_ln(x + residual) # Normalize after
15
16 # Forward (Type 2)
17 residual = x
18 x = self.self_attn_ln(x) # Normalize before attention
19 x = self.self_attn(x, x, x, padding_mask, causal=False) + residual
20 residual = x
21 x = self.ffn_ln(x) # Normalize before MLP
22 x = self.fc2(F.relu(self.fc1(x))) + residual

Select all options that are true:

� The Type 1 code implements a type of Transformer encoder-style layer.
� The Type 1 code implements a type of Transformer decoder-style layer.
� The Type 2 code implements a type of Transformer encoder-style layer.
� The Type 2 code implements a type of Transformer decoder-style layer.
� Type 1 and Type 2 implementations are mathematically equivalent.
� Type 1 and Type 2 implementations are not mathematically equivalent.
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(e) (10 pts) Consider a Transformer model consisting of L Type 2 Transformer layers. We will investigate
the behavior of the magnitudes of activations during the forward pass, as well as the gradients during
the backward pass. To simplify our analysis, we assume that both the self-attention and feedforward
modules are initialized as identity mappings, such that for any input vector x:

• self.self_attn(x, x, x) == x

• self.fc2(F.relu(self.fc1(x))) == x

With identity self-attention and feed-forward modules, the Transformer now only consists of layer
normalizations and residual connections, so each layer essentially simplifies to x 7→ x + LN(x) +
LN(x + LN(x)).
Suppose the input to the Transformer, denoted by x(0), is already normalized, which means it satisfies
x
(0)
1 + x

(0)
2 + · · · + x

(0)
d = 0 and ‖x(0)‖2 =

√
d. Let the output of the `-th layer be x(`). Determine

x(`) as a function of ` and x(0), where ` = 1, 2, . . . , L.
Hint: x(1) = x(0) + LN(x(0)) + LN(x(0) + LN(x(0))) = 3x(0).
You might want to compute x(2) to help see the general pattern.
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NOTE: You should only attempt this part if you’ve already gotten all the other points that you think
you can get on this exam.

(f) (20 pts) In the previous part, we examined the forward propagation of a Type 2 Transformer. In this
section, we will investigate the behavior of gradient norms during the backward propagation. Retaining
all assumptions from the previous part, we additionally assume that the loss is L and the upstream

gradient of the last layer, denoted by g(L) := (
∂L
∂x(L)

)>, satisfies ‖g(L)‖2 =
√
d. Your task is to prove

that the norm of the upstream gradient for the `-th layer g(`) := (
∂L
∂x(`)

)> is less than or equal

to
2L+ 1

2`+ 1

√
d, i.e.

‖g(`)‖2≤
2L+ 1

2`+ 1

√
d, for any ` = 1, 2, . . . , L (5)

which suggests that the lower layers usually get gradients of greater magnitudes. As an example,
consider the L-th layer (the last layer), for which the norm of the upstream gradient is ‖g(L)‖2 =
√
d =

2L+ 1

2L+ 1

√
d.

You may use the following lemma without proof:

Lemma 1. If y = LN(x), then ∥∥∥∥∂L∂x
∥∥∥∥
2

≤
√
d

‖x‖2

∥∥∥∥∂L∂y
∥∥∥∥
2

.
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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[Doodle page! Draw us something if you want or give us suggestions or complaints. You can also use this
page to report anything suspicious that you might have noticed.

If needed, you can also use this space to work on problems. But if you want the work on this page to be
graded, make sure you tell us on the problem’s main page.]
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