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EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai Homework 10
This homework is due on Friday, April 21, 2023, at 10:59PM.

1. Meta-learning for Learning 1D functions
A common toy example with Neural Networks is to learn a 1D function. Suppose now that our task is not
to learn not just one 1D function, but any of a class of 1D functions drawn from a task distribution DT .

In this problem we consider all signals of the form

y =
∑
s∈S

αsϕ
u
s (x)

The task distribution produces individual tasks which have true features with random coefficients in some a
priori unknown set of indices S. We do not yet know the contents of S, but we can sample tasks from DT .

The important question is thus, how do we use sampled tasks in training to improve our performance
on an unseen task drawn from DT at test time?

One solution is to use our training tasks to learn a set of weights to apply to the features before performing
regression through meta-learning. That is, we choose feature weights ck to apply to the features ϕu

k(x)

before learning coefficients β̂k such that

ŷ =

d−1∑
k=0

β̂kckϕ
u
k(x).

These feature weights ck are a toy model for the deep network that precedes the task-specific final layer in
meta-learning.

We can then perform the min-norm optimization

β̂ =argmin
β

∥β∥22 (1)

s.t. y =
d−1∑
k=0

βkckΦ
u
k (2)

where Φu is the column vector of features [ϕu
0(x), ϕ

u
1(x), . . . , ϕ

u
d−1(x)]

⊤ which are orthonormal with re-
spect to the test distribution.

Now, we want to learn c which minimizes the expectation for β̂ over all tasks,

argmin
c

EDT

[
LT

(
β̂T , c

)]
where LT

(
β̂T , c

)
is the loss from learning β̂ for a specific task with the original formulation and a given c

vector. c is shared across all tasks and is what we will optimize with meta-learning.
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There are many machine learning techniques which can fall under the nebulous heading of meta-learning, but
we will focus on one with Berkeley roots called Model Agnostic Meta-Learning (MAML)1 which optimizes
the initial weights of a network to rapidly converge to low loss within the task distribution. The MAML
algorithm as described by the original paper is shown in Fig. 1.

Figure 1: MAML algorithm. We will refer to the training steps on line 6 as the inner update, and the training step on
line 8 as the meta update.

At a high level, MAML works by sampling a “mini-batch” of tasks {Ti} and using regular gradient descent
updates to find a new set of parameters θi for each task starting from the same initialization θ. Then the
gradient w.r.t. the original θ each calculated for each task using the task-specific updated weights θi, and θ
is updated with these ‘meta’ gradients. Fig. 2 illustrates the path the weights take with these updates.

Figure 2: MAML gradient trajectory illustration

The end goal is to produce weights θ∗ which can reach a state useful for a particular task from DT after a
few steps — needing to use less data to learn. If you want to understand the fine details of the algorithm
and implementation, we recommend reading the original paper and diving into the code provided with this
problem.

(a) In the original MAML algorithm, the inner loop performs gradient descent to optimize loss with re-
spect to a task distribution. However, here we’re going to use the closed form min-norm solution for
regression instead of gradient descent.

1C. Finn, P. Abbeel, S. Levine, "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks," in Proceedings of the
34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017
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Let’s recall the closed form solution to the min-norm problem. Write the solution to

argmin
β

∥β∥ , such that y = Aβ

in terms of A and y.

(b) For simplicity, suppose that we have exactly one training point (x, y), and one true feature ϕu
t (x) =

ϕu
1(x). We have a second (alias) feature that is identical to the first true feature, ϕu

a(x) = ϕu
2(x) =

ϕu
1(x). This is a caricature of what always happens when we have fewer training points than model

parameters.
The function we wish to learn is y = ϕu

t (x). We learn coefficients β̂ using the training data. Note,
both the coefficients and the feature weights are 2-d vectors.

Show that in this case, the solution to the min-norm problem 1 is β̂ = 1
c20+c21

[
c0
c1

]
(c) Assume for simplicity that we have access to infinite data from the test distribution for the purpose of

updating the feature weights c. Calculate the gradient of the expected test error with respect to
the feature weights c0 and c1, respectively:

d

dc

(
Extest,ytest

[
1

2

∥∥∥y − β̂0c0ϕ
u
t (x)− β̂1c1ϕ

u
a(x)

∥∥∥2
2

])
.

Use the values for β from the previous part. (Hint: the features ϕu
i (x) are orthonormal under the test

distribution. They are not identical here.)

(d) Generate a plot showing that, for some initialization c(0), as the number of iterations i → ∞ the
weights empirically converge to c0 = ∥c(0)∥, c1 = 0 using gradient descent with a sufficiently small
step size. Include the initialization and its norm and the final weights. What will β go to?
Run the code in the Jupyter Notebook and then answer these questions:

(e) (In MAML for regression using closed-form solutions) Considering the plot of regression test loss
versus n_train_post, how does the performance of the meta-learned feature weights compare
to the case where all feature weights are set to 1? Additionally, how does their performance
compare to the oracle, which performs regression using only the features present in the data? Can
you explain the reason for the downward spike observed at n_train_post = 32?

(f) By examining the changes in feature weights over time during meta-learning, can you justify the
observed improvement in performance? Specifically, can you explain why certain feature weights
are driven towards zero?

(g) (In MAML for regression using gradient descent) With num_gd_steps = 5, does meta-learning
contribute to improved performance during test time? Furthermore, if we change num_gd_steps
to 1, does meta-learning continue to function effectively?

(h) (In MAML for classification) Based on the plot of classification error versus n_train_post, how
does the performance of the meta-learned feature weights compare to the case where all feature
weights are 1? How does the performance of the meta-learned feature weights compare to the
oracle (which performs logistic regression using only the features present in the data)?

(i) By observing the evolution of the feature weights over time as we perform meta-learning, can you
justify the improvement in performance? Specifically, can you explain why some feature weights
are being driven towards zero?
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2. Vision Transformer

Figure 3: Image captioning model

Transformer

Figure 4: Vision Transformer

You are building a model to perform image captioning. As shown in Figure 3, the model consists of a
vision transformer which takes in images and a language transformer which outputs captions. The language
transformer will use cross-attention to access the representation of the image.

(a) For each transformer, state whether it is more appropriate to use a transformer encoder (a transformer
with no masking except to handle padding) or decoder (a transformer with autoregressive self-attention
masking) and why.
Vision transformer?
⃝ Encoder-style transformer
⃝ Decoder-style transformer

Reason:

Language transformer?
⃝ Encoder-style transformer
⃝ Decoder-style transformer

Reason:
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(b) A standard language transformer for captioning problems alternates between layers with cross-attention
between visual and language features and layers with self-attention among language features. Let’s say
we modify the language transformer to have a single layer which performs both attention operations
at once. The grid below shows the attention mask for this operation. (For now, assume the vision
transformer only outputs 3 image tokens called <ENC1>, <ENC2>, and <ENC3>. <SOS> is the start
token, and <PAD> is a padding token.)

(i) One axis on this grid represents sequence embeddings used to make the queries, and the other axis
represents sequence embeddings used to make the keys. Which is which?
⃝ Each column creates a query, each row creates a key and a value
⃝ Each column creates a key and a value, each row creates a query
⃝ Each column creates a query and a value, each row creates a key
⃝ Each column creates a key, each row creates a query and a value

(ii) Mark X in some of the blank cells in the grid to illustrate the attention masks. (A X marked
cell is masked out, a blank cell is not.)

<SOS> a mountain range <PAD>
<SOS>

a
mountain

range
<PAD>

<ENC1>
<ENC2>
<ENC3>

(c) In discussion, we showed that the runtime complexity of vision transformer attention is O(D(H4/P 4)),
where H is the image height and width, P is the patch size, and D is the feature dimension of the
queries, keys, and values. Some recent papers have reduced the complexity of vision transformer
attention by segmenting an image into windows, as shown in Figure 5.

Figure 5: Vision transformer attention with windows

Patches only attend to other patches within the same window. What is the Big-O runtime complex-
ity of the attention operation after this modification? Assume each window consists of K by K
patches.

3. Pretraining and Finetuning

Homework 10, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 5



Homework 10 @ 2023-04-15 01:40:22Z

When we use a pretrained model without fine-tuning, we typically just train a new task-specific head. With
standard fine-tuning, we also allow the model weights to be adapted.

However, it has recently been found that we can selectively fine-tune a subset of layers to get better perfor-
mance especially under certain kinds of distribution shifts on the inputs. Suppose that we have a ResNet-26
model pretrained with CIFAR-10. Our target task is CIFAR-10-C, which adds pixel-level corruptions (like
adding noise, different kinds of blurring, pixelation, changing brightness and contrast, etc) to CIFAR-10. If
we could only afford to fine-tune one layer, which layer (i.e. 1,2,3,4,5) in Figure 6 should we choose to
finetune to get the best performance on CIFAR-10-C? Give brief intuition as to why.

Figure 6: Fine-tuning the model pretrained with CIFAR-10 on CIFAR-10-C dataset

4. Prompting Language Models
(a) Exploring Pretrained LMs

Play around with the web interface at https://dashboard.cohere.ai/playground/generate.
This plaground provides you an interface to interact with a large language model from Cohere and
tweak various parameters. You will need to sign up for a free account.
Once you’re logged in, you can choose a model in the parameters pane on the right. "command-
xlarge-nightly" is a generative model that responds well with instruction-like prompts. "xlarge" and
"medium" are generative models focusing on sentence completion. Spend a while exploring prompting
these models for different tasks. Here are some suggestions:

• Look through the ‘Examples . . . ’ button at the top of the page for example prompts.
• Ask the model to answer factual questions.
• Prompt the model to generate a list of 100 numbers sampled uniformly between 0 and 9. Are the

numbers actually randomly distributed?
• Insert a poorly written sentence, and have the model correct the errors.
• Have the model brainstorm creative ideas (names for a storybook character, recipes, solutions to

solve a problem, etc.)
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• Chat with the model like a chatbot.

Answer the questions below:

i. Describe one new thing you learned by playing with these models.
ii. How does the temperature parameter affect the outputs? Justify your answer with a few

examples.
iii. Describe a task where the larger models (e.g., "xlarge" or "command-xlarge-nightly") sig-

nificantly outperform the smaller ones (e.g., "medium"). Paste in examples from the biggest
and smallest model to show this.

iv. Describe a task where even the largest model performs badly. Paste in an example to show
this.

v. Describe a task where the model’s outputs improve significantly with few-shot prompting
compared to zero-shot prompting.

(b) Using LMs for classification
Run lm_prompting.ipynb, then answer the following questions. If you did not do part (a), you
will still need to get a Cohere account to complete this part.

i. Analyze the command-xlarge-nightly model’s failures. What kinds of failures do you see with
different prompting strategies?

ii. Does providing correct labels in few-shot prompting have a significant impact on accuracy?
iii. Observe the model’s log probabilities. Does it seem more confident when it is correct than

when it is incorrect?
iv. Why do you think the GPT2 model performed so much worse than the command-xlarge-

nightly model on the question answering task?
v. How did soft prompting compare to hard prompting on the pluralize task?

vi. You should see that when the model fails (especially early in training of a soft prompt or with a
bad hard prompt) it often outputs common but uninformative tokens such as the, ", or \n. Why
does this occur?

5. Soft-Prompting Language Models
You are using a pretrained language model with prompting to answer math word problems. You are using
chain-of-thought reasoning, a technique that induces the model to “show its work” before outputting a final
answer.

Here is an example of how this works:

[prompt] Question: If you split a dozen apples evenly among yourself
and three friends, how many apples do you get? Answer: There are 12
apples, and the number of people is 3 + 1 = 4. Therefore, 12 / 4 = 3.
Final answer: 3\n

If we were doing hard prompting with a frozen language model, we would use a hand-designed [prompt]
that is a set of tokens prepended to each question (for instance, the prompt might contain instructions for the
task). At test time, you would pass the model the sequence and end after “Answer:” The language model
will continue the sequence. You extract answers from the output sequence by parsing any tokens between
the phrase “Final answer: ” and the newline character “\n”.
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(a) Let’s say you want to improve a frozen GPT model’s performance on this task through soft prompting
and training the soft prompt using a gradient-based method. This soft prompt consists of 5 vectors
prepended to the sequence at the input — these bypass the standard layer of embedding tokens into
vectors. (Note: we do not apply a soft prompt at other layers.) Imagine an input training sequence
which looks like this:

["Tokens" 1-5: soft prompt] [Tokens 6-50: question]
[Tokens 51-70: chain of thought reasoning]
[Token 71: answer] [Token 72: newline]
[Tokens 73-100: padding].

We compute the loss by passing this sequence through a transformer model and computing the cross-
entropy loss on the output predictions. If we want to train the soft-prompt to output correct reasoning
and produce the correct answer, which output tokens will be used to compute the loss? (Remember
that the target sequence is shifted over by 1 compared to the input sequence. So, for example, the
answer token is position 71 in the input and position 70 in the target).

(b) Continuing the setup above, how many parameters are being trained in this model? You may write
this in terms of the max sequence length S, the token embedding dimension E, the vocab size V, the
hidden state size H, the number of layers L, and the attention query/key feature dimension D.

(c) Mark each of the following statements as True or False and give a brief explanation.
(i) If you are using an autoregressive GPT model as described in part (a), it’s possible to precompute

the representations at each layer for the indices corresponding to prompt tokens (i.e. compute
them once for use in all different training points within a batch).

(ii) If you compare the validation-set performance of the best possible K-token hard prompt to the
best possible K-vector soft prompt, the soft-prompt performance will always be equal or better.

(iii) If you are not constrained by computational cost, then fully finetuning the language model is
always guaranteed to be a better choice than soft prompt tuning.

(iv) If you use a dataset of samples from Task A to do prompt tuning to generate a soft prompt which
is only prepended to inputs of Task A, then performance on some other Task B with its own soft
prompt might decrease due to catastrophic forgetting.

(d) Suppose that you had a family of related tasks for which you want use a frozen GPT-style language
model together with learned soft-prompting to give solutions for the task. Suppose that you have
substantial training data for many examples of tasks from this family. Describe how you would adapt
a meta-learning approach like MAML for this situation?
(HINT: This is a relatively open-ended question, but you need to think about what it is that you want to
learn during meta-learning, how you will learn it, and how you will use what you have learned when
faced with a previously unseen task from this family.)

6. TinyML - Quantization and Pruning.
(This question has been adapted with permission from MIT 6.S965 Fall 2022)

TinyML aims at addressing the need for efficient, low-latency, and localized machine learning solutions in
the age of IoT and edge computing. It enables real-time decision-making and analytics on the device itself,
ensuring faster response times, lower energy consumption, and improved data privacy.

To achieve these efficiency gains, techniques like quantization and pruning become critical. Quantization
reduces the size of the model and the memory footprint by representing weights and activations with fewer
bits, while pruning eliminates unimportant weights or neurons, further compressing the model.
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(a) Please complete pruning.ipynb, then answer the following questions.

i. In part 1 the histogram of weights is plotted. What are the common characteristics of the
weight distribution in the different layers?

ii. How do these characteristics help pruning?
iii. After viewing the sensitivity curves, please answer the following questions. What’s the relation-

ship between pruning sparsity and model accuracy? (i.e., does accuracy increase or decrease
when sparsity becomes higher?)

iv. Do all the layers have the same sensitivity?
v. Which layer is the most sensitive to the pruning sparsity?

vi. (Optional) After completing part 7 in the notebook, please answer the following questions. Ex-
plain why removing 30 percent of channels roughly leads to 50 percent computation reduc-
tion.

vii. (Optional) Explain why the latency reduction ratio is slightly smaller than computation re-
duction.

viii. (Optional) What are the advantages and disadvantages of fine-grained pruning and channel
pruning? You can discuss from the perspective of compression ratio, accuracy, latency,
hardware support (*i.e.*, requiring specialized hardware accelerator), etc.

ix. (Optional) If you want to make your model run faster on a smartphone, which pruning
method will you use? Why?

(b) Please complete quantization.ipynb, then answer the following questions.

i. After completing K-means Quantization, please answer the following questions. If 4-bit k-means
quantization is performed, how many unique colors will be rendered in the quantized ten-
sor?

ii. If n-bit k-means quantization is performed, how many unique colors will be rendered in the
quantized tensor?

iii. After quantization aware training we see that even models that use 4 bit, or even 2 bit precision
can still perform well. Why do you think low precision quantization works at all?

iv. (Optional) Please read through and complete up to question 4 in the notebook, then answer this
question.

Recall that linear quantization can be represented as r = S(q − Z). Linear quantization projects
the floating point range [fpmin, fpmax] to the quantized range [quantizedmin, quantizedmax].

That is to say,
rmax = S(qmax − Z)
rmin = S(qmin − Z)

Substracting these two equations, we have,
S = rmax/qmax

S = (rmax + rmin)/(qmax + qmin)
S = (rmax − rmin)/(qmax − qmin)

S = rmax/qmax − rmin/qmin
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Which of these is the correct result of subtracting the two equations?
v. (Optional) Once we determine the scaling factor S, we can directly use the relationship between

rmin and qmin to calculate the zero point Z.

Z = int(round(rmin/S − qmin)
Z = int(round(qmin − rmin/S))

Z = qmin − rmin/S
Z = rmin/S − qmin

Which of these are the correct zero point?
vi. (Optional) After finishing question 9 on the notebook, please explain why there is no ReLU

layer in the linear quantized model.
vii. (Optional) After completing the notebook, please compare the advantages and disadvantages

of k-means-based quantization and linear quantization. You can discuss from the perspective
of accuracy, latency, hardware support, etc.

7. Homework Process and Study Group
Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework? Write it down here where you’ll
need to remember it for the self-grade form.
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