
Homework 11 @ 2023-04-25 01:04:15Z

EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai Homework 11
This homework is due on Friday, April 28, 2022, at 10:59PM.

1. Coding Question: Summarization (Part II)
Please follow the instructions in this notebook. You will learn how to efficiently enable the Transformer
encoder-decoder model to generate sequences. Then, you will fine-tune another Transformer encoder-
decoder model based on the pretrained language model T5 for the same task.

Note: this notebook takes 45 min to 1 hour to run after you implemented everything correctly. Please start
early.

• Download submission_log.json and submit it to “Homework 11 (Code) (Summarization)” in
Gradescope.

• Answer the following questions in your submission of the written assignment:

(a) What are the ROUGE-1, ROUGE-2, and ROUGE-L scores of the model trained from scratch on
the summarization task?
Solution: The model’s ROUGE-1 score is 18.82, its ROUGE-2 score is 3.02, and its ROUGE-L score
is 15.19. These results may vary slightly due to numerical errors, but deviations should not exceed 1.0.

(b) In the T5 paper, which optimizer is employed for training T5, and what are the peak learning
rates for pretraining and finetuning?
Solution: As stated in Section 3.1.2 "Training" of the T5 paper, the optimizer used for training T5 is
AdaFactor. The peak learning rate for pretraining is 0.01, while the peak learning rate for finetuning is
0.001.

(c) What are the ROUGE-1, ROUGE-2, and ROUGE-L scores of the finetuned model, and how do
these scores compare to those of the model trained from scratch?
Solution: The model’s ROUGE-1 score is 26.56, its ROUGE-2 score is 7.04, and its ROUGE-L score
is 20.75. These results may vary slightly due to numerical errors, but deviations should not exceed 1.0.
In comparison, the model finetuned from T5 has much higher performance according to all three types
of ROUGE scores.

(d) Provide appropriate prompts for the summarization task, apply the prompt to the example documents,
and fed them into an off-the-shelf large language model (e.g., ChatGPT). Specify the model used,
and share the generated outputs. Compare the outputs with your finetuned model’s outputs
qualitatively and identify the main reason for any differences.
Solution: A reference prompt:
Summarize this document in one sentence: [DOCUMENT]

Example output for the first document (from GPT-4 version of ChatGPT):
This document discusses the under-researched status of prostate cancer, advancements in radiother-
apy, the discovery of genetic markers, and the improvement of surgical techniques using the DaVinci
surgical robot to enhance treatment outcomes.

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 1

https://colab.research.google.com/drive/14qxHKq_kiBTZPuk_zGyahZo6vCqxprBB

Homework 11 @ 2023-04-25 01:04:15Z

Example output for the second document (from GPT-4 version of ChatGPT):
The European Space Agency astronaut will conduct experiments on the International Space Station,
focusing on metal physics, machine technology, and the impact of space on the human body, including
body clock, nutrition, skin, and headaches.
Comparison:
Neither the model’s output nor GPT-4’s output matches the reference summary, because the summa-
rization task is difficult and the evaluation is often subjective. Different summaries focus on various
perspectives of the document. ChatGPT’s answer is longer and more natural, as it was finetuned on
human instructions.
(Please note that this is an open-ended question, and the answer may vary depending on the prompts,
the large language model, and random seeds.)

2. Comparing Distributions
Divergence metrics provide a principled measure of difference between a pair of distributions (P, Q). One
such example is the Kullback-Leibler Divergence, that is defined as

DKL(P ||Q) = Ex∼P (x)

[
log

P (x)

Q(x)

]

(a) Technically DKL is not a true distance since it is asymmetric, i.e. generally DKL(P ||Q) ̸= DKL(Q||P).
Give an example of univariate distributions P and Q where DKL(P ||Q) ̸= ∞, DKL(Q||P) = ∞.
Solution: To get DKL(Q||P) = ∞, the easiest way is to have P (x) = 0 somewhere where Q(x) ̸= 0.
For example, we can have P be a uniform random variable on [0,+1] and Q be a uniform random
variable on [−2, 2]. With this guess, we can now look at DKL(P ||Q) to verify that it is not infinity.

DKL(P ||Q) = Ex∼P (x)

[
log

P (x)

Q(x)

]
=

∫ 1

0
log

P (x)

Q(x)
dx

=

∫ 1

0
log

1
1
4

dx

=

∫ 1

0
log 4dx

= log 4 ̸= ∞.

There are many examples that would work here. What would not work are proper Gaussian distribu-
tions since those are not zero anywhere.

(b) For a fixed target distribution P , we call DKL(P ||Q) the forward-KL, while calling DKL(Q||P) the
reverse-KL. Due to the asymmetric nature of KL, distributions Q that minimize DKL(P ||Q) can be
different from those minimizing DKL(Q||P).
From the following plots, identify which of (A, B) correspond to minimizing forward vs. reverse
KL. Give brief reasoning. Here, only the mean and standard deviation of Q is allowed to vary during
the minimization.

Solution: The easiest key to understanding this is to look at example B. In this, Q is extremely tiny
in some place where P is big – this would make the forward-KL DKL(P ||Q) enormous. Meanwhile,

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 2

Homework 11 @ 2023-04-25 01:04:15Z

everwhere that Q is big, we see that P is also reasonably large in B. So the reverse-KL DKL(Q||P) is
not enormous. This tells us that B corresponds to minimizing reverse-KL.
Meanwhile, looking at A, we see that this corresponds to minimizing forward-KL DKL(P ||Q) because
the Q is strongly trying to avoid being small where P is large and trying to strike an “average” type
balance between the two modes of P . By doing so, it is putting a higher probability in a location where
P is smaller — this would be costly in reverse-KL but is not that expensive in forward-KL.

3. Continual Learning (Optional)
Run this notebook and answer the questions. We will explore some strategies that we can mitigate catas-
trophic forgetting when our neural network model sequentially learns the new tasks. Let’s try and compare
three classic methods: 1) naive 2) Elastic Weight Consolidation (EWC) and 3) Rehearsal.

(a) Naive approach

i. What do you observe? How much does the network forget from the previous tasks? Why do you
think this happens?
Solution: The network forgets a lot from the previous tasks. This happens because the network
is trained on each task separately, so it does not have access to the previous tasks when it is trained
on the current task.

ii. (Open-ended question) We are using CNN. Does MLP perform better or worse than CNN? Try it
out and report your results.
Solution: Any reasonable answer is correct. The example answer is: MLP will perform better
than CNN. This is because CNNs utilize the spatial structure of the images, and the permuted
MNIST images are not spatially structured.

(b) Elastic Weight Consolidation

i. Hyperparameter is underexplored in this assignment. Try different values of λ and report your
results.
Solution: Every value students have tried is correct

ii. What is the role of λ? What happens if λ is too small or too large? Explain the results with
plasticity and stability of the network.
Solution: λ controls plasticity and stability of the network. If it’s small, the model becomes
more plastic and vice versa

(c) Rehearsal

i. What would be the pros and cons of rehearsal? Solution: Pros: good performance, low levels of
catastrophic forgetting; Cons: memory and computational cost of saving/re-training on past tasks.

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 3

https://colab.research.google.com/drive/1a_9HODPge_cw4KQamI7IKYcX6xicte1d

Homework 11 @ 2023-04-25 01:04:15Z

4. Variational AutoEncoders
(Parts of this problem are adapted from Deep Generative Models, Stanford University)

For this problem we will be using PyTorch to implement the variational autoencoder (VAE) and learn a
probabilistic model of the MNIST dataset of handwritten digits. Formally, we observe a sequence of binary
pixels x ∈ {0, 1}d and let z ∈ Rk denote a set of latent variables. Our goal is to learn a latent variable model
pθ(x) of the high-dimensional data distribution pdata(x).

The VAE is a latent variable model with a specific parameterization pθ(x) =
∫
pθ(x, z)dz =

∫
p(z)pθ(x|z)dz

Specifically, VAE is defined by the following generative process (often called reparameterization trick):

p(z) = N (z|0, I) (sample noise from standard Gaussian)

pθ(x|z) = Bern(x|fθ(z)) (decode noise to generate sample from real-distribution)

That is, we assume that the latent variables z are sampled from a unit Gaussian distribution N (z|0, I). The
latent z are then passed through a neural network decoder fθ(·) to obtain the parameters of the d Bernoulli
random variables that model the pixels in each image.

To learn the parameterized distibution we would like to maximize the marginal likelihood pθ(x). However
computing pθ(x) =

∫
p(z)pθ(x|z)dz is generally intractable since this requires integrating over all possible

values of z ∈ R. Instead, we consider a variational approximation to the true posterior

qϕ(z|x) = N
(
z|µϕ(x), diag(σ

2
ϕ(x))

)
In particular, we pass each image x through a neural network that outputs mean µϕ and diagonal covariance
diag(σ2

ϕ(x)) of the multivariate Gaussian distribution that approximates the distribution over the latent vari-
ables z given x. The high level intuition for training parameters (θ, ϕ) requires considering two expressions:

• Decoding Latents : Sample latents from qϕ(z), maximize likelihood of generating samples x ∼ pdata

• Matching Prior : A Kullback-Leibler (KL) term to constraint qϕ(z) to be close to the p(z)

Putting these terms together, gives us a lower-bound of the true marginal log-likehood, called the evidence
lower bound (ELBO):

log pθ(x) ≥ ELBO(x; θ, ϕ) = Eqϕ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
Decoding Latents

−DKL(qϕ(z|x)||p(z)))︸ ︷︷ ︸
Matching Prior

In this notebook, implement the reparameterization trick in the function sample_gaussian. Specifically,
your answer will take in the mean m and variance v of the Gaussian and return a sample x ∼ N (m, diag(v))

Then, implement negative_elbo_bound loss function.

Note: We ask for the negative ELBO, as PyTorch optimizers minimze the loss function. Furthere, since we
are computing the negative ELBO over a mini-batch of data {x(i)}ni=1, make sure to compute the average of
per-sample ELBO. Finally, note that the ELBO itself cannot be computed exactly since computation of the
reconstruction term is intractable. Instead, you should estaimate the reconstruction term via Monte-Carlo
sampling

−Eqϕ(z|x)[log pθ(x|z)] ≈ − log pθ(x|z(1))

where z(1) ∼ qϕ(z|x) denotes a single sample from the learned posterior.

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 4

https://colab.research.google.com/drive/1DXeYEmQnH_Pmezv0s-eduo8c028JuRos

Homework 11 @ 2023-04-25 01:04:15Z

The negative_elbo_bound expects as output three quantities: average negative ELBO, reconstruc-
tion loss, KL divergence.

Answer these questions:

(a) Test your implementation by training VAE with

python experiment.py --model vae

Once the run is complete (10000 iterations), report the following numbers : the average

• negative ELBO
• KL-Divergence term
• reconstruction loss

Since we’re using stochastic optimization, you may wish to run the model multipple times and report
each metric’s mean and corresponding standard error (Hint: the negative ELBO on the test subset
should be ∼ 100)

Solution:
• negative ELBO : 98.12± 0.77

• KL-Divergence : 20.38± 0.38

• reconstruction loss : 77.93± 0.65

(b) Visualize 200 digits (generate a single image tiled in a grid of 10 × 20 digits) sampled from pθ(x)

Solution: Solutions should show visible digits, for example the img below (taken from a student
submission).

5. Generative Adversarial Networks (Optional)
(Parts of this problem are adapted from Deep Generative Models, Stanford University)

Unlike VAEs, that explicitily model data distributions with likelihood-based training, Generative Adversarial
Networks (GANs) belong to the family of implicit generative models.

To model high-dimensional data distributions pdata(x) (with x ∈ Rn), define

• a generator Gθ : Rk → Rn

• a discriminator Dϕ : Rn → (0, 1)

To obtain samples from the generator, we first sample a k-dimensional random vector z ∼ N (0, 1) and
return Gθ(z) ∈ Rn. The discriminator is effectively a classifer that judges how realistic the fake image
Gθ(z) are, compared to real samples from the data distribution x ∼ pdata(x). Because its output is intended
to be interpreted as a probability, the last layer of the discriminator is frequently the sigmoid function,

σ(x) =
1

1 + e−x

such that σ(x) ∈ (0, 1). Therefore, for logits hϕ(x), discriminator output is Dϕ(x) = σ(hϕ(x)).

For training GANs we define learning objectives Ldiscriminator(ϕ; θ) and Lgenerator(θ;ϕ) that are opti-
mized iteratively in two-stages with gradient descent. In particular, we take a gradient step to minimize

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Homework 11 @ 2023-04-25 01:04:15Z

Ldiscriminator(ϕ; θ) w.r.t discriminator parameters ϕ, followed by gradient step to minimize Lgenerator(θ;ϕ)
w.r.t. generator parameters θ. In lecture we’ve considered following versions of the losses:

Ldiscriminator(ϕ; θ) = −Ex∼pdata

[
logDϕ(x)

]
︸ ︷︷ ︸

Real Data

− Ez∼N (0,I)

[
log

(
1−Dϕ(Gθ(z))

)]
︸ ︷︷ ︸

Generated Data

Lminimax
generator(θ;ϕ) = Ez∼N (0,I)

[
log

(
1−Dϕ(Gθ(z))

)]
Training a GAN can be viewed as solving the following minimax optimization problem, for generator Gθ

and discriminator Dϕ:

min
G

max
D

V (G,D) ≡ Ex∼pdata

[
logDϕ(x)

]
+ Ez∼N (0,I)

[
log

(
1−Dϕ(Gθ(z))

)]
(a) Vanishing Gradient with Minimax Objective

Rewriting the above loss in terms of discriminator logits, sigmoid we have

Lminimax
generator(θ;ϕ) = Ez∼N (0,I)

[
log

(
1− σ(hϕ(Gθ(z)))

)]
Show that ∇θL

minimax
generator(θ;ϕ) → 0 when discriminator output Dϕ(Gθ(z)) ≈ 0. Why is this prob-

lematic for training the generator when the discriminator is well-trained in identifying fake samples?

Solution: Recall that for sigmoid activation σ′(x) = σ(x)(1− σ(x)). Taking the gradient w.r.t θ

∂Lminimax
generator

∂θ
= Ez∼N (0,I)

[−σ′(hϕ(Gθ(z)))

1− σ(hϕ(Gθ(z)))

∂

∂θ
hϕ(Gθ(z))

]
= Ez∼N (0,I)

[−σ(hϕ(Gθ(z)))(1− σ(hϕ(Gθ(z))))

1− σ(hϕ(Gθ(z)))

∂

∂θ
hϕ(Gθ(z))

]
= Ez∼N (0,I)

[
− σ(hϕ(Gθ(z)))

∂

∂θ
hϕ(Gθ(z))

]
= −Ez∼N (0,I)

[
Dϕ(Gθ(z))

∂

∂θ
hϕ(Gθ(z))

]
From the above derivation, it follows that for Dϕ(Gθ(z)) ≈ 0, suggesting that

∂Lminimax
generator

∂θ → 0. As the
generator update is proportional to the gradient, the vanishing gradient causes generator optimization
to be slow.

(b) GANs as Divergence Minimization
To build intuition about the training objective, consider the distribution pθ(x) corresponding to:

x = Gθ(z) where z ∼ N (0, I)

• Optimal Discriminator
The discriminator minimizes the loss

Ldiscriminator(ϕ; θ) = −Ex∼pdata

[
logDϕ(x)

]
− Ex∼pθ(x)

[
log

(
1−Dϕ(x)

)]
For a fixed generator θ, show that the discriminator loss is minimized when D∗

ϕ = pdata(x)
pθ(x)+pdata(x)

.

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 6

Homework 11 @ 2023-04-25 01:04:15Z

Solution: Rewriting the discriminator loss, we have

Ldiscriminator(ϕ; θ) = −Ex∼pdata

[
logDϕ(x)

]
− Ex∼pθ(x)

[
log

(
1−Dϕ(x)

)]
= −

∫
pdata(x) logDϕ(x)dx−

∫
pθ(x) log

(
1−Dϕ(x)

)
dx

=

∫
f(Dϕ(x))dx

where f(t) = −pdata(x) log t−pθ(x) log(1− t) with t = Dϕ(x). Note that the above function is
a sum of two strictly convex functions, and is therefore convex, i.e. there exists a unique optimal
solution t∗ that minimizes f(t).

f ′(t) = −pdata(x)

t
+

pθ(x)

1− t
≡ 0

=⇒ tpθ(x) = (1− t)pdata(x)

∴ t∗ =
pdata(x)

pθ(x) + pdata(x)

Therefore for each x, we obtain the optimal discriminator by setting t∗ = Dϕ(x) =
pdata(x)

pθ(x)+pdata(x)

• Generator Loss
For a fixed generator θ, and corresponding optimal discriminator D∗

ϕ, show that the minimax
objective V (G,D∗) satisfies

V (G,D∗) = − log 4 + 2DJSD(pdata||pθ)

where DJSD(p||q) is the Jenson-Shannon Divergence.

Note: A divergence measures the distance between two distributions p, q. In particular, for distri-
butions p, q with common support X , typically used divergence metrics include

DKL(p||q) = Ex∼p

[
log

p(x)

q(x)

]
(Kullback-Leibler Divergence)

DJSD(p||q) =
1

2
DKL

(
p||p+ q

2

)
+

1

2
DKL

(
q||p+ q

2

)
(Jensen-Shannon Divergence)

Solution: Consider the learning objective

V (G,D) = Ex∼pdata

[
logDϕ(x)

]
+ Ex∼pθ(x)

[
log

(
1−Dϕ(x)

)]
For the optimal discriminator we know Dϕ(x) = pdata(x)

pθ(x)+pdata(x)
. Substituting the above in the

learning objective, we have

V (G,D) = Ex∼pdata

[
log

pdata(x)

pθ(x) + pdata(x)

]
+ Ex∼pθ(x)

[
log

(
1− pdata(x)

pθ(x) + pdata(x)

)]
= Ex∼pdata

[
log

pdata(x)

pθ(x) + pdata(x)

]
+ Ex∼pθ(x)

[
log

pθ(x)

pθ(x) + pdata(x)

]

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 7

Homework 11 @ 2023-04-25 01:04:15Z

= Ex∼pdata

[
log

pdata(x)
pθ(x)+pdata(x)

2 · 2

]
+ Ex∼pθ(x)

[
log

pθ(x)
pθ(x)+pdata(x)

2 · 2

]
= − log 4 +

[
log

pdata(x)
pθ(x)+pdata(x)

2

]
+ Ex∼pθ(x)

[
log

pθ(x)
pθ(x)+pdata(x)

2

]
= − log 4 + 2DJSD(pθ||pdata)

(c) Training GANs on MNIST
To mitigate vanishing gradients during training, ? propose the non-saturating loss

Lns
generator(θ;ϕ) = −Ez∼N (0,I)

[
logDϕ(Gθ(z))

]
For mini-batch approximation, we use Monte-Carlo estimates of the learning objectives, such that

Ldiscriminator(ϕ; θ) ≈ − 1

m

m∑
i=1

logDϕ(x
(i))− 1

m

m∑
i=1

log
(
1−Dϕ(Gθ(z

(i)))
)

Lns
generator(ϕ; θ) ≈ − 1

m

m∑
i=1

logDϕ(Gθ(z
(i)))

for batch-size m, and batches of real-data x(i) ∼ pdata(x) and fake-data z(i) ∼ N (0, I). Following
these details, implement training for GANs with above learning objectives by filling relevant snippets
in gan.py. Test your implementation by running

python experiment.py --model gan

Visualize 200 digits (generate a single image tiled in a grid of 10 × 20 digits) sampled from pθ(x)

Solution: Please see soln/gan.py

6. 0th Order Optimization - Policy Gradient
We will now talk about 0th order optimization, also known as Policy Gradient in a Reinforcement Learning
context. Although this method is primarily used in an RL context we will be adapting this method to do 0th

order optimization on a Neural Network.

kth order optimization means that in the optimization, we use a kth order derivative (δL
k

δkw
) to do the opti-

mization. So we can see that gradient descent is a first order optimization method, while Newton’s method
is a second order optimization method.

Polciy gradient is a 0th order optimization method - which means that you use no derivative for the opti-
mzation. This is used in contexts in which the loss is a blackboxed function, hence propogating a gradient
through it is impossible.

Policy gradient at a high level approximates the gradient and then does gradient descent using this approxi-
mated gradient.

(a) Prove that

pθ(x)∇θ log
(
pθ(x)

)
= ∇θpθ(x)

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 8

Homework 11 @ 2023-04-25 01:04:15Z

Solution: Using chain rule, we can see that the following is true

pθ(x)∇θ log
(
pθ(x)

)
= pθ(x)

∇θpθ(x)

pθ(x)

= ∇θpθ(x)

(b) Let’s say we have a neural network f(x) which takes in a x and uses the weights(w) to output 2 logits
(P = [P (y = 0), P (y = 1)]).
Let p(x, y) be the joint distribution of the input and output data according to our model. Hence
pw(x, y) = p(x)pw(y|x), where p(x) is the ground distribution of x, while pw(y|x) = f(x)[y] is what
our model predicts.

Similarly we have a blackboxed loss function L(x, f(x)) which outputs a loss. For example if I
wanted to learn to classify y = 1 if x > 5 and y = 0 otherwise, L(4, (0.1, 0.9)) would be small while
L(4, (0.9, 0.1)) would be very high. As we already discussed, since this loss is blackboxed we can’t
take the derivative through it.

We want to optimize the following objective function

w∗ = argminwJ(w)

where

J(w) = E(x,f(x))∼pw(x,y)[L(x, f(x))].

To do this optimization we want to approximate ∇wJ(w) so that we could use an optimization method
like gradient descent to find w∗

Prove that ∇wJ(w) can be approximated as 1
N

∑i=N
i=1 (∇w log

(
pw(yi|xi)

)
L(xi, f(xi))

Hints:
• Try creating a τ = (x, f(x))

• E[X] =
∫
x xP (X = x)dx

• Use the result from part a which was pθ(x)∇θ log
(
pθ(x)

)
= ∇θpθ(x)

• pw(x, y) = p(x)pw(y|x)

Solution:

w∗ = argminwE(x,f(x))∼pw(x,y)[L(x, f(x))]

We call

J(w) = E(x,f(x))∼pw(x,y)[L(x, f(x))]

and

τ = (x, f(x))

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 9

Homework 11 @ 2023-04-25 01:04:15Z

J(w) = Eτ∼pw(τ)[L(τ)]

=

∫
τ
pw(τ)L(τ)dτ

∇wJ(w) =

∫
τ
(∇wpw(τ))L(τ)dτ

=

∫
τ
(∇w log

(
pw(τ)

)
)pw(τ)L(τ)dτ

= Eτ∼pw(τ)[(∇w log
(
pw(τ)

)
L(τ)]

We know that

∇w log
(
pw(τ)

)
= ∇w[log

(
p(x)

)
+ log

(
pw(y|x)

)
]

Since p(x) does not depend on w we can simplify this to

∇w log
(
pw(τ)

)
= ∇w log

(
pw(y|x)

)
Hence

∇wJ(w) = Eτ∼pw(τ)[(∇w log
(
pw(τ)

)
L(τ)]

= Eτ∼pw(τ)[(∇w log
(
pw(y|x)

)
L(x, f(x))]

which can be approximated as

1

N

i=N∑
i=1

(∇w log
(
pw(yi|xi)

)
L(xi, f(xi))

(c) The following two parts are based on this notebook, where you need to implement policy gradient
according to your derivation before answering these questions.
Include the screenshot of the accuracy plot here. With a correct implementation, you should observe
a test accuracy of approximately 75% after the final iteration.

Solution: See the solution notebook.
(d) Compare the policy gradient and supervised learning approaches for this classification task,

focusing on their convergence speed, stability, and final performance. Explain any observed
differences.
Solution: In the given classification task, the policy gradient method converges significantly slower
compared to supervised learning.
Additionally, the policy gradient approach exhibits less stability during training.
Finally, the overall performance of the policy gradient method is generally worse than that of super-
vised learning.
Supervised learning is more direct in its approach, optimizing the loss function to increase its predicted
probability of true labels, while policy gradients optimize through its own prediction with discrete
rewards, which might not be as informative.

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 10

https://colab.research.google.com/drive/1gvx9kCUSJsHZ_FiMlN8PuHyLfC3awO-g

Homework 11 @ 2023-04-25 01:04:15Z

7. Homework Process and Study Group
Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is taking, so we
can change things in the future if possible.

(a) What sources (if any) did you use as you worked through the homework?
(b) If you worked with someone on this homework, who did you work with?

List names and student ID’s. (In case of homework party, you can also just describe the group.)

(c) Roughly how many total hours did you work on this homework? Write it down here where you’ll
need to remember it for the self-grade form.

Contributors:

• Linyuan Gong.

• Kumar Krishna Agrawal.

• Suhong Moon.

• Dhruv Shah.

• Anant Sahai.

• Aditya Grover.

• Stefano Ermon.

• Yashish Mohnot.

Homework 11, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 11

