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EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai Midterm Exam

Exam location: Dwinelle 155

PRINT your student ID:

PRINT AND SIGN your name: ,
(last) (first) (signature)

PRINT your discussion section:
Row Number (front row is 1): Seat Number (left most is 1):

Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

Section 0: Pre-exam questions (5 points)

1. Honor Code: Please copy the following statement in the space provided
below and sign your name below. (1 point or −∞)
As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will
follow the rules and do this exam on my own.

2. What’s your favorite thing about this semester? (4 points)

Do not turn this page until the proctor tells you to do so. You can work on Section 0 above before time starts.
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3. Convolutional Neural Networks (19 points)

(a) (6 pts) Consider a convolutional neural network layer with:

• Input shape: [10, 3, 32, 32] (batch size, number of input channels, input height, input width)
• Number of filters: 64

For each of the following configurations of kernel size, stride, and padding, calculate the output
dimensions [n, c, h, w] where n is the batch size, c is the number of channels, and h,w are the output
height and width. Assume that each layer has the same input shape and number of filters as specified
above.

i. Kernel size: 3x3, stride: 1, padding: 1

Solution: Since the output dimensions are calculated as dout = ⌊din+2p−k
s + 1⌋ where din is

the input dimension, dout and dout are the output dimensions, p is the padding, k is the kernel
size, and s is the stride, we can substitute these values to get the output dimension: dout =

⌊32+2(1)−3
1 + 1⌋ = 32.

The output shape would be [10, 64, 32, 32]

ii. Kernel size: 4x4, stride: 2, padding: 0

Solution: Using the same formula above, we get the output shape [10, 64, 15, 15]

(b) (3 pts) Design a 3x3 filter that detects vertical edges like the one shown in the image below.

__ __ __
__ __ __
__ __ __


Solution:
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−1 0 1
−1 0 1
−1 0 1


(c) (3 pts) Design a 3x3 filter to blur an image.

(Hint: blurring involves averaging a pixel’s value with those of its neighbors.)__ __ __
__ __ __
__ __ __


Solution: 1

9
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9


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(d) (7 pts) In a regular convolutional operation, the kernel slides over the input data in a contiguous manner.
However, in dilated convolution, the kernel is "dilated" by introducing gaps between its elements,
resulting in a larger receptive field for each output pixel.

Figure 1: Dilated convolution kernels. Source: "Brain MRI Super-Resolution Using 3D Dilated Convolutional En-
coder–Decoder Network" by Du et al.

The dilation (d) determines the spacing between kernel elements — a dilation of d introduces d − 1
gaps between two kernel elements. The example above illustrates a 3x3 1-dilated kernel (d = 1 is
equivalent to a regular convolutional kernel) and a 3x3 2-dilated (d = 2) kernel.

i. You are given an input matrix M and 2x2 filter k below. Compute their dilated convolution
with d = 2. Assume that gaps in the kernel are filled with zeros, stride is 1 and padding is 0.

M =

1 2 3
4 5 6
7 8 9

 k =

[
1 1
1 1

]

Solution: With dilation d = 2, the kernel becomes a 3x3 kernel:

kd =

1 0 1
0 0 0
1 0 1


Applying regular convolution M ∗ kd, we get:

M ∗ kd =
[
20

]

ii. Consider a two-layer architecture:
DilatedConv1(3x3, d=1) → DilatedConv2(3x3, d=2)

Both layers use the same sized kernel (3x3), but DilatedConv1 has a dilation d = 1 and
DilatedConv2 has a dilation d = 2. Compute the size of the receptive field at the output of
the final layer (DilatedConv2).
Recall that the receptive field is the region in the original input image whose pixels affect the
output for a pixel in the specified layer.
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Solution: 7x7. Drawing the outputs might help.

Figure 2: Receptive field size at DilatedConv1 and DilatedConv2 layers. Source: "Multi-Scale Context Aggregation
by Dilated Convolutions", Yu et. al.

Figure 3: Receptive field size at each layer. Source: "Multi-Scale Context Aggregation by Dilated Convolutions", Yu
et. al.
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4. Beam Search (8 points)
Consider performing beam search with beam size k = 2 that expands the top k sequences until an <EOS>
token (end of sequence) is reached. Upon keeping a completed sequence as one of the top-k, the beam size
for continuing the remaining search decreases by 1.

The log-probabilities of each word at a given timestep are shown next to the word.

<START>

deep -0.60

learn -0.80

<EOS> -0.22

learn -1.61

deep -0.01

<EOS> -4.61

<EOS> -2.30

learn -0.12

deep -0.05

<EOS> -2.99

deep -2.30

learn -0.11

deep -0.69

<EOS> -0.69

<EOS> -0.28

learn -1.38

deep -0.28

<EOS> -1.38

<EOS> 0

<EOS> 0

<EOS> 0

What are the 2 completed sequences that this decoder would consider?

What are their overall log-probabilities?

Solution: At t = 1, we have only two hypotheses:
deep: -0.6
learn: -0.8

At t = 2, we expand and have:
deep deep: -0.65
deep <EOS>: -3.59
learn deep: -3.9
learn learn: -0.91

The crossed-out hypotheses are eliminated since we only keep the top two.

At t = 3, we expand and have:
deep deep <EOS>: -0.87
deep deep learn: -2.26
learn learn <EOS>: -3.21
learn learn learn: -1.03
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Now, we continue expanding to get one more completed sequence:
learn learn learn deep <EOS>: -1.31
learn learn learn <EOS>: -2.41

Solution: As we found from our beam search, the most likely completed sequences are

deep deep <EOS>: -0.87
learn learn learn deep <EOS>: -1.31
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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5. Attention on Linear RNNs (14 points)
Consider a linear RNN with a two-dimensional state ht and a scalar input ut at each timestep:

ht = Whht−1 +Wuut

Suppose Wh =

[
−1 2
0 1

]
, Wu =

[
0
1

]
, and we initialize h0 =

[
0
0

]
. The inputs are u1 = 1, u2 = 2,

u3 = −1. The decoder state is hout = Whh3.

We also generate the keys, values, and queries for decoder-side cross-attention as purely linear functions of
the state using weight matrices:

WK =

[
2 −1
−1 1

]
WV =

[
1 0
−1 1

]
WQ =

[
3 1
4 2

]

A partially filled in computation graph is provided below. The edges with weights W on them indicate that
the vector is left-multiplied by that weight matrix as it passes along that edge.

0
0

0
1+

Wh

Wu

u1= 1

+
Wh

Wu

u2= 2

+
Wh

Wu

u3= –1

4
2

1
1
1

4 2
4

WK WV WK WV WK WV
WQ

Wh

Encoder k1 k2 k3v1 v2 v3 q

h1 h2 h3h0

–1
–2

hout

(a) (10 pts) Fill in the blanks on the diagram above for the missing hidden states, keys, and values.
(Hint: You can also use some of the given numbers to check your work.)

Solution: We have v1 =

[
0
1

]
, h2 =

[
2
3

]
, v2 =

[
2
1

]
, k3 =

[
6
−1

]
, hout =

[
0
2

]
(b) (4 pts) What would be the output of attention for the decoder’s query? To simplify calculations, use

an argmax instead of softmax. For example, softmax([1, 3, 2]) becomes argmax([1, 3, 2]) = [0, 1, 0].

Solution: Compute inner products of query with the keys:

⟨q, k1⟩ = 2
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⟨q, k2⟩ = 6

⟨q, k3⟩ = 4

We take argmax rather than softmax, and have argmax([2, 6, 4]) = [0, 1, 0]

Now, take weighted sum of value vectors (in this case all are zeroed out except for the one correspond-
ing to the highest dot-product between query and key)

0 ·

[
0
1

]
+ 1 ·

[
2
1

]
+ 0 ·

[
4
−2

]

So final output is

[
2
1

]
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6. Debugging neural networks (21 points)

(a) (9 pts) Recall that we learned three initialization methods in lecture: Zero (all weight values are set to
0 in the beginning), Xaiver, and He. Suppose we train two different deep CNNs to classify images: (i)
using ReLU as the activation function, and (ii) using sigmoids as the activation function. For each of
them, we try initializing weights with the three different initialization methods aforementioned, while
the biases are always initialized to all zeros. We plot the validation accuracies with different training
iterations below:

Which initialization methods are A, B, and C,
and very briefly explain your reasoning below it. Please use ■ for your selections.
A is □ Zero □ Xavier □ He

B is □ Zero □ Xavier □ He

C is □ Zero □ Xavier □ He

Solution: A is Xaiver, B is He initialization. From the plot we observe that B performs better for
ReLU while A performs better for sigmoid. Recall that Xaiver is designed for sigmoid activations,
whereas He initialization considers ReLU. He initialization assumes the inputs to the ReLU function
are half non-positive and half positive and change the standard deviation of the normalization distribu-
tion to compensate for that property.
C is zero parameter initialization. This method causes neurons to perform the same calculation in each
iteration and produces the same outputs. Thus the accuracy is the lowest and not updating for different
iterations.
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(b) (12 pts) You are designing a neural network to perform image classification. You want to use data
augmentation to regularize the training for your model. You write the following code:

import random
from torch.utils.data import DataLoader, Subset

train_dataset = load_train_dataset()

augmented_dataset = apply_augmentations(train_dataset)

num_data = len(augmented_dataset)
indices = list(range(num_data))
random.shuffle(indices)
split = int(0.8 * num_data)
train_idxs, val_idxs = indices[:split], indices[split:]

train_data = Subset(augmented_dataset, train_idxs)
val_data = Subset(augmented_dataset, val_idxs)
test_data = load_test_dataset()

train_loader = DataLoader(train_data, batch_size=32)
val_loader = DataLoader(val_data, batch_size=32)
test_loader = DataLoader(test_dataset, batch_size=32)

# Train the model
for epoch in range(10):

for images, labels in train_loader:
# Training code here

# Validation code here

# Testing code here

On running this code, you find that you get a high training accuracy and validation accuracy, but a
significantly lower testing accuracy as compared to the validation accuracy.
Your TA suggests that there is a bug in your code that is causing this behavior. Identify the bug,
briefly explain why it causes the observed behavior, and show how to fix the bug.
Solution: In our buggy code, we perform data augmentation before we create train/validation splits.
This causes training data to leak into the validation set and vice-versa. To correct this, we must perform
data augmentation after creating the training/validation splits.
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7. Learning from Point Clouds (22 points)
A point cloud is a discrete set of data points in space. Because of this set-valued nature of point clouds,
concepts from graph neural nets are often relevant in their processing.

In Fig.4, we consider a simple network to process a 2d point cloud X = {xi}ni=1 ∈ Rn×2, where n is the
number of points. The original features of each point are its horizontal and vertical coordinates.

Input point cloud

𝑋(
𝑛×
2)

𝑍(
𝑛×
𝑓)

ReLU then 
average pool

𝐹(𝑓) 𝑌+(𝑘)

Point feature learning Global feature 𝐹 Output 
score 𝑌#

shareddi
m

en
sio

n

Figure 4: 2d point cloud processing network.

For example, an input point cloud with ground-truth of digit 1 could be represented as


0 4
0 3
0 2
0 1

 where each

row is a different point in the point cloud.

(a) (8 pts) The point feature learning module in Fig.4 learns f -dimensional features for each point sepa-
rately. Specifically, it learns (shared) weights W1 ∈ R2×f to get hidden layer outputs Z = XW1. We
then apply the nonlinear activation function element-wise and then use average pooling to yield the
f -dimensional global feature vector F ∈ Rf .
Suppose we swap the first two points of the input point cloud X , i.e. {x1, x2, ..., xn} to {x2, x1, ..., xn}.
Show that the global feature F will not change.
Note: In reality, the network here is permutation invariant, as changing the ordering of the n input
points in X will not affect the global feature F .

Solution: Expand X row-wise, derive X1:

Z = XW1 =


x1
x2
...
xn

W1 =


x1W1

x2W1

...
xnW1

 (1)

The global feature F is the average all row vectors of Z:

F =
1

n

n∑
i=1

ReLU(xiW1) (2)

We can see that swapping the order of x1, x2 will not affect F .
Note: Actually, permuting the order of points {x1, x2, ..., xn} will not change F as it is a sum of
all input point coordinates transformed by a weight matrix. Additionally, ReLU is invariant to the
permutation of the order of input points.
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(b) (8 pts) One drawback of the point feature learning discussed in part (a) is that the spatial inter-
relationships of different points is not considered.
One idea is to use the Euclidean distance as a similarity measure to group points together into local
neighborhoods, and to then process each point together with contextual information about that neigh-
borhood. Your friend proposed several different point grouping methods listed below.
Select all methods that guarantee permutation-invariance, i.e. the global feature vector F will
not change with different orderings of the points. Please use ■ for your selections.

□ For each point xi of the point cloud X , we find the top-m nearest neighbor points. We then
augment each point coordinates with its nearest neighbors’ coordinates to make X̃ ∈ Rn×2(m+1).
The order of a concatenated group of points would be: the center point, 1st closest, 2nd closest
point, ..., mth closest point. Now Z = X̃W̃1 where W̃1 ∈ R2(m+1)×f are the shared learnable
weights.

□ For each point xi of the point cloud X , we find the top-m nearest neighbor points. As in the pre-
vious choice, we then augment each point coordinates with its nearest neighbors’ coordinates and
get X̃ ∈ Rn×2(m+1). The difference from the previous choice is that the order of a concatenated
group of nearby points simply follows their order in the original X . The W̃1 is the same as the
previous choice.

□ For each point xi of the point cloud X , we instead find all neighboring points with the distance to
xi smaller than a predefined radius r. We then augment each point coordinates with its neighbors’
coordinates with the order being the center point, the 1st closet point within r, the 2nd closet point
within r, ..., the furthest point within r. Because different points might have a different number of
neighbors within radius r, the shared learnable weights W̃1 ∈ R2(n+1)×f are applied by using the
relevant-size truncation of W̃1 for every point.

□ For each point xi of the point cloud X , as in the previous option, we find all neighboring points
with the distance to xi smaller than a predefined radius r. But instead of concatenating the rep-
resentation of the point with its neighboring points, we instead extend the point’s representation
with just the distance d from xi to the furthest point within the radius r resulting in an X̃ ∈ Rn×3.
The W̃1 ∈ R3×f .

Solution: The first, the third and the fourth one are permutation-invariant. The second one follows a
given order by X , and cannot guarantee permutation invariance.
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(c) (6 pts) Point downsampling (reducing the number of points for deeper layers to process). Let’s consider
a deeper network, as shown in Fig.5. We are adding a pooling layer (highlighted in bold text) after the
first point feature learning layer to downsample half of the points in the cloud (Z → Z1), followed
by another point feature learning layer to increase the dimension of the point features from f to 2f
(Z1 → Z2). (Note that this mimics pooling procedures in CNNs: the spatial size shrinks, followed by
an increase of the feature dimensionality.)

Input point cloud

𝑋(
𝑛×

2)

𝑍(
𝑛×
𝑓)

𝑍 !
(𝑛 2
×
𝑓)

ReLU then 
average pool

𝐹(2𝑓) 𝑌+(𝑘)

Point feature learning 1

Down-
sample

Global feature 𝐹 Output 
score 𝑌#

𝑍 "
(𝑛 2
×
2𝑓
)

shared

Point feature learning 2

shared

Figure 5: A deeper point cloud processing network.

Consider two candidate algorithms. Both start with the point cloud comprising n points and both
iteratively select points until you have at least n

2 samples. For both, we construct two sets: sampled
and remaining to denote the set of sampled and remaining points. For both, we first pick a random
point and use it to initialize sampled and we initialize remaining with all the other points. Then, the
iterative processes are different for the two algorithms as described below.
Which algorithm is more similar in spirit to using standard max pooling for downsampling in
CNNs? Please use ■ for your selections.
□ Algorithm 1:

i. For each point in remaining find its nearest neighbor in sampled, saving the distance.
ii. Select the point in remaining whose nearest neighbor distance is the largest and move it from

remaining to sampled. (i.e. We keep points far from those we already have.)

□ Algorithm 2:
i. For each point in remaining find its nearest neighbor in sampled, saving the distance.

ii. Select the point in remaining whose nearest neighbor distance is the smallest and move it from
remaining to sampled. (i.e. We keep points close to those we already have.)

At the end, only the points in sampled get sent on to the next layer.

Solution: The first algorithm is more similar to a max pooling layer than the second algorithm. The
first algorithm outputs the leading N/2 most different points and is a good fit for the pooling layer.
The problem with the second algorithm is that it forces each point to bind with its nearest neighbor
in the remaining set and by this constraint we lose the flexiblity to group densed points (more than 2
points) into one single point while keeping single significant individual points alone without having to
bind with a neighbor. Such disjoint even division is seen in CNN pooling layers as the pixels’ nearest
neighbor distances are all the same, but not a good fit for GNN pooling layers where we have to respect
the freedom of neighbors having different distances.
Note: Indeed, the first algorithm is called the furthest point sampling algorithm, and it has the flexiblity
to output any number of most significant points.
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[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]
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8. Normalization (14 points)
(a) (2 pts) Consider the following digram where the shaded blocks are the entries participating in one

normalization step for a CNN-type architecture. N represents the mini-batch, H,W represent the
different pixels of the “image” at this layer, and C represents different channels.

• Which one denotes the process of batch normalization? Please use ■ for your selections.
□ A □ B □ C

• Which one denotes layer normalization? Please use ■ for your selections.
□ A □ B □ C

Solution: Batch norm is option A, Layer norm is option B.

(b) (12 pts) Consider a simplified BN where we do not divide by the standard deviation of the data batch.
Instead, we just de-mean our data batch before applying the scaling factor γ and shifting factor β. For
simplicity, consider scalar data in an n-sized batch: [x1, x2, . . . , xn]. Specifically, we let x̂i = xi − µ
where µ is the average 1

n

∑n
j=1 xj across the batch and output [y1, y2, . . . , yn] where yi = γx̂i + β to

the next layer. Assume we have a final loss L somewhere downstream. Calculate ∂L
∂xi

in terms of ∂L
∂yj

for j = 1, . . . , n as well as γ and β as needed.

Numerically, what is ∂L
∂x1

when n = 1 and our input batch just consists of [x1] with an output
batch of [y1]? (Your answer should be a real number. No need to justify.)

What happens when n→∞? (Feel free to assume here that all relevant quantities are bounded.)
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Solution:
Since values for a given xi affects all the values of yj we need to sum over partial derivatives with
respect to all the different yj .

∂L

∂xi
=

n∑
j=1

∂L

∂yj
∗ ∂yj
∂xi

Now, let’s calculate ∂yj
∂xi

. Note that we can write yj as

yj = γ

xj −
1

n

m∑
k=1

xk

+ β

So we can calculate it’s derivative wrt xi as

∂yj
∂xi

=

 γ ∗
(
1− 1

n

)
, if i = j

γ ∗
(
− 1

n

)
, if i ̸= j

We can combine the sum to get

∂L

∂xi
=

 n∑
j=1,j ̸=i

γ ∗ − 1

n
∗ ∂L

∂yj

+

[
γ ∗ (1− 1

n
) ∗ ∂L

∂yi

]

= γ

 ∂L

∂yi
− 1

n

n∑
j=1

∂L

∂yj


Based on this expression, we see that ∂L

∂xi
= 0 when n = 1 and γ · ∂L∂yi when n approaches infinity. This

shows that with larger batch size, batchnorm has an ideal effect of isolating the gradients through each
sample.
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9. Optimizers (10 points)

Algorithm 1 SGD with Momentum
1: Given η = 0.001, β1 = 0.9
2: Initialize:
3: time step t← 0
4: parameter θt=0 ∈ Rn

5: Repeat
6: t← t+ 1
7: gt ← ∇ft(θt−1)
8: mt ← β1mt−1 + (1− β1)gt
9: θt ← θt−1 − ηmt

10: Until the stopping condition is met

Algorithm 2 Adam Optimizer (without bias correction)

1: Given η = 0.001, β1 = 0.9, β2 = 0.999
2: Initialize time step t ← 0, parameter θt=0 ∈ Rn,

mt=0 ← 0, vt=0 ← 0
3: Repeat
4: t← t+ 1
5: gt ← ∇ft(θt−1)
6: mt ← (A)
7: vt ← (B)
8: θt ← θt−1 − η · mt√

vt
9: Until the stopping condition is met

(a) (4 pts) Complete part (A) and (B) in the pseudocode of Adam.

Solution:
mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g
2
t

(b) (6 pts) This question asks you to establish the relationship between

• L2 regularization for vector-valued weights θ refers to adding a squared Euclidean norm of the
weights to the loss function itself:

f reg
t = ft(θ) +

λ

2
||θ||22

• Weight decay refers to explicitly introducing a scalar γ in the weight updates assuming loss f :

θt+1 = (1− γ)θt − η∇f(θt)

where γ = 0 would correspond to regular SGD since it has no weight-decay.

Show that SGD with weight decay using the original loss ft(θ) is equivalent to regular SGD on
the L2-regularized loss f reg

t (θ) when γ is chosen correctly, and find such a γ in terms of λ and η.

Solution:
f reg
t (θ) = ft(θ) +

λ

2
||θ||22 =⇒ ∇f reg

t (θ) = ∇ft(θ) + λθ

θt+1 ← θt − η∇f reg
t (θt) = θt − η∇ft − ηλθt = (1− ηλ)θt − η∇ft(θt)

The process above shows that L2 regularization and weight decay are equivalent when γ = λη.

Midterm Exam, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 21



Midterm Exam @ 2023-04-09 04:34:56Z

PRINT your name and student ID:

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main
page.]

Midterm Exam, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 22



Midterm Exam @ 2023-04-09 04:34:56Z

PRINT your name and student ID:

10. Self-Supervised Linear Purification (31 points)
Consider a linear encoder — square weight matrix W ∈ Rm×m — that we want to be a “purification”
operation on m−dimensional feature vectors from a particular problem domain. We do this by using self-
supervised learning to reconstruct n points of training data X ∈ Rm×n by minimizing the loss:

L1(W ;X) = ∥X−WX∥2F (3)

While the trivial solution W = I can minimize the reconstruction loss (3), we will now see how weight-
decay (or equivalently in this case, ridge-style regularization) can help us achieve non-trivial purification.

L2(W ;X, λ) = ∥X−WX∥2F︸ ︷︷ ︸
Reconstruction Loss

+λ ∥W∥2F︸ ︷︷ ︸
Regularization Loss

(4)

Note above that λ controls the relative weighting of the two losses in the optimization.

(a) (8 pts) Consider the simplified case for m = 2 with the following two candidate weight matrices:

W (α) =

[
1 0
0 1

]
W (β) =

[
1 0
0 0

]
(5)

The training data matrix X is also given to you as follows:

X =

[
−2.17 1.98 2.41 −2.03
0.02 −0.01 0.01 −0.02

]
(6)

i. Compute the reconstruction loss and the regularization loss for the two encoders, and fill in
the missing entries in the table below.

Encoder Reconstruction Loss Regularization Loss

α __________ __________

β 0.001 __________

Solution:

Encoder Reconstruction Loss Regularization Loss

α 0 2
β 0.001 1

ii. For what values of the regularization parameter λ is the identity matrix W (α) not a better
solution for the objective L2 in (4), as compared to W (β)?
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Solution: Plugging the numbers from the table into Eqn. 4, the β encoder is a better choice for

λ > 1× 10−3.

This suggests that despite the encoder being square, regularization induces a bottleneck in the
encoder, preventing it from learning an identity mapping.
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(b) (15 pts) Now consider a generic square linear encoder W ∈ Rm×m and the regularized objective L2

reproduced below for your convenience:

L2(W ;X, λ) = ∥X−WX∥2F︸ ︷︷ ︸
Reconstruction Loss

+λ ∥W∥2F︸ ︷︷ ︸
Regularization Loss

Assume σ1 > · · · > σm ≥ 0 are the m singular values in X, that the number of training points n is
larger than the number of features m, and that X can be expressed in SVD coordinates as X = UΣV⊤.

i. You are given that the optimizing weight matrix for the regularized objective L2 above takes the
following form. Fill in the empty matrices below.

Ŵ =


 ·



σ2
1

σ2
1+λ

σ2
2

σ2
2+λ

. . .
σ2
m

σ2
m+λ

 ·


 (7)

Solution:

Ŵ =

 U
 ·



σ2
1

σ2
1+λ

σ2
2

σ2
2+λ

. . .
σ2
m

σ2
m+λ

 ·
 U⊤



ii. Derive the above expression.
(Hint: Can you understand L2(W ;X, λ) as a sum of m completely decoupled ridge-regression
problems?)
Solution: Sum of m completely decoupled ridge-regression approach:
Since the squared Forbenius norm is just the sum of squares of all the elements in the matrix, we
can decouple them into sum of m l2 norms. Specifically:

L2(W ;X, λ) = ∥X−WX∥2F + λ∥W∥2F =

m∑
i=1

∥Xi −WiX∥22 + λ∥Wi∥22

where Xi ∈ R1×n and Wi ∈ R1×m are rows. We can also write it as:

L2(W ;X, λ) =
m∑
i=1

∥X⊤
i −X⊤W⊤

i ∥22 + λ∥W⊤
i ∥22

which resembles the classical ridge regression optimization problem ∥y −Xβ∥22 + λ∥β∥22 which
can be minimized with β̂ = (X⊤X + λI)−1X⊤y.
Through pattern matching X⊤

i = y,X⊤ = X,W⊤
i = β, we can arrive with the result:

Ŵ⊤
i = (XX⊤ + λI)−1XX⊤

i

Ŵ = XX⊤(XX⊤ + λI)−1
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Now substitute X = UΣV⊤ to the above result, we have:

Ŵ = UΣV⊤(UΣV⊤)⊤(UΣV⊤(UΣV⊤)⊤ + λI)−1

Ŵ = UΣΣ⊤U⊤(UΣΣ⊤U⊤ + λI)−1

Ŵ = UΣΣ⊤U⊤U(ΣΣ⊤ + λI)−1U⊤

Ŵ = UΣΣ⊤(ΣΣ⊤ + λI)−1U⊤

Solution: Vector calculus approach:
Alternatively we can solve this problem by taking the gradient of the loss function with respect to
the weight matrix and finding the optimal point by setting it to zero.

∇L2(W ;X, λ) = ∇(∥X−WX∥2F + λ∥W∥2F ) = 0

Using property of the frobenius norm ∥A∥2F = Tr
(
ATA

)
we can rewrite the objective function:

∥X−WX∥2F + λ∥W∥2F = Tr
(
(X−WX)(X−WX)T

)
+ λTr

(
WW T

)
Next, expand out the terms in the trace and compute the gradient with respect to W .

∇W

[
Tr

(
XXT

)
− Tr

(
XXTW

)
− Tr

(
WXXT

)
+Tr

(
WXXTW

)
+ λTr

(
WW T

)]

= −2XXT + 2WXXT + 2λW = 0

Solving for W we get
W = XXT (XXT + λI)−1

The problem can then be completed by substituting in X = UΣV⊤ as in the alternative solution.
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(c) (8 pts) You are given that the data matrix X ∈ R8×n has the following singular values:

{σi} = {10, 8, 4, 1, 0.5, 0.36, 0.16, 0.01}

For what set of hyperparameter values λ can we guarantee that the learned purifier Ŵ will
preserve at least 80% of the feature directions corresponding to the first 3 singular vectors of
X, while attenuating components in the remaining directions to at most 50% of their original
strength?
(Hint: What are the two critical singular values to focus on?)

Solution:
For the first condition, we have

σ2
i

σ2
i + λ

≥ 0.8 ∀ i ∈ {1, 2, 3}

Since σi are decreasing, we get

σ2
3

σ2
3 + λ

≥ 0.8 =⇒ 42

42 + λ
≥ 0.8 =⇒ λ ≤ 4

Similarly, solving for the second condition gives:

σ2
4

σ2
4 + λ

≤ 0.6 =⇒ 1

1 + λ
≤ 0.5 =⇒ λ ≥ 1

Thus,

1 ≤ λ ≤ 4
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