Deep Neural Networks (UC Berkeley CS182/282A, Spring 2023)

Lecture 12: GNNs and RNNs
3 Mar 2023

Lecturer: Anant Sahai Scribes: Yishu Yan and Will Yang

1 GNN: Node-level Tasks

Last lecture: Graph-level tasks to Node-level tasks

Graph-level tasks involve predicting a single label /attribute for the entire input graph
while node-level tasks involve predicting a label/attribute for each individual node in the
input graph.

(1) In CNNs (e.g., U-net), some image tasks are performed at the pixel-level. Similarly,
in GNNs, some tasks are performed at the node-level.

(2) Many graph algorithms are already working at the node-level. These interesting
questions exist at the node-levels in graphs that can be dealt with GNNs.

(3) Weight sharing is a key feature of GNNs that allows them to operate across the entire
graph, regardless of the number of connections between nodes. This makes it possible to
support node-level tasks.

1.1 Holding out nodes

1st scenario: the entire graph has actual labels for every node; 2nd scenario: the graph
contains a lot of nodes, only a subset of them are labeled, and some of the labeled nodes are
held back as a validation set.

Two general approaches:

(1) Simply deleting the held-out nodes and all associated edges during training. However,
it can potentially damage the topology of the graph because the deleted nodes and edges
might be important for the overall structure of the graph and removing them could change
the way the remaining nodes are connected.

(2) Keeping the nodes and associated edges, but removing the “information” in the node.
The removed information is not in the training loss (simply deleting the label information).
It typically involves “Removal” of node label (feature vector). It can be done either by
replacing with 0 or replacing with a special label “MASK?” (if 0 is a meaningful label). It
allows messages to pass over that node using message-passing language.

An example of these two approaches is sketched in Fig. 77.

Held-out node 4

Simple undirected graph Approach #1 Approach #2

Figure 1: An example of held-out node with approach 1 (simply deleting the held-out nodes
and all associated edges) or approach 2 (replacing node 4 with 0 when 0 is a meaningless
label.)

Example of “MASK”:

The processing of graph neural nets is all based on real vectors. You can’t necessarily
have this special symbol but you want it.

Example solution: Put something that is not going to show up naturally:

Original data is a vector of length 3, [a b C}T ; embed into a vector of length 4,
[a b c 1}T, if this is valid information; if it is not valid information: [a b ¢ O]T.

During training, you want the neural network to learn to ignore this additional element
and focus on the meaningful information in the original vector.

Another approach is embedding the vectors in a larger space where invalid information
has a totally different direction.

Is it possible to perform surgery on the operation of the nodes graph? We want to
implement weight sharing across different nodes. Thus, the function needs to have a good
way of removing dependence on self. It depends on the structure of the update function. If
the update function is some function where we can simply take out the self, like an average,
then removing dependence on self is easy. However, for more complex update functions
where we need our own information, like weighted average by a similarity metric, simply
removing self is not possible.

In general, the amount of data needed should be larger than the complexity of the function
trying to learn.

2 RNN Introduction

There are two approaches in how to think about RNNs.

From GNN to RNN: In GNNs, you have the basis of graph algorithms on graph. It can
be interesting in natural to want to do the same operation over and over again. Different
conceptual layers of processing might share weights among them. Thinking about RNNs
which are designed to process sequential data, we could think about where else that could
be natural.

From Conv-net to RNN:

We will use an analogy from SP(Signal processing)-perspective:

In a conv-net, we had filters defined by finite convolutions. SP analogy: FIR filters

In an RNN, we had filters defined by internal state and weights. SP analogy: IIR filters

FIR: Finite Impulse Response:), h[t — i|u[i]
ITR: Infinite Impulse Response: Get infinite response length through the use of filter state

Yer1 = Prys + Pouy
Where u, is the input signal at time step ¢, and y; is the filter output at time step ¢

RNNs are native to sequential data. FIR filters can be applied anywhere since they only
require a local neighborhood of data to be defined. In contrast, IIR filters require sequential
processing and internal state that evolves over time.

There are analogies in deep learning to the difference between open-loop control and
closed-loop control, although they are still being built out. Certain types of RNN archi-
tectures can be conceptualized using the understanding of closed-loop control, although the
concept is not yet fully developed. These analogies become particularly important when
discussing things like diffusion models and generative models, which rely on feedback from
the output to adjust the input and are closely related to the control-type ideas.

3 Kalman Filter-inspired Example

Kalman filter is probably the most famous example of the use of filter in practical problems
and the most practical example in real world deployment of the infinite pulse response type
and is a filter that has internal states.

3.1 Classical Approach

You have linear evolution of a true system with a description as
ht+1 == Atrueht + Bajtu (1)

where {I;} are the underlying (hidden) states of the system, {&} are some driving terms
(e.g. white noise) and Agye and B are some coefficient matrices. A noisy observation is

= Ch, + V,, (2)

where {V;} is some other noise.
You want an estimator that takes the noisy observations and gives you an estimate of the
true states. Namely,

ilt+1 = A'hy + B'7,, (3)

where {h;} are the estimations of the true states {h,}.

Classically, one would make Gaussian assumptions on what’s happening and compute the
explicit Bayes rule estimator, which will give a MAP or MSE estimate for the state. Then,
one would compute the update of that state and get an equation like Eq. ??7. The actual
implementation is sophisticated, but the key idea is having the system Eq. 77 in hand and
get Eq. 77.

3.2 Neural Network Approach

Now, we want a learned a filter to do this job without knowing models like Eqs. ?? and
?7?. The way we do this is by treating A’ and B’ as learnable weights to be learned from data.

3.2.1 The Easier Case

Now the question is: what does our data look like? Starting with the easiest case: we have
R n;
sequences of measured trajectories with ground truth. (i.e. we have the states (htm ft,j> ’
t=0
for trajectories j = 1,--- ,m). Then, how to use PyTorch to solve the problem? Namely, we
"

have some data traces <Et,j, ft7j> " and want to use PyTorch to learn weights A’, B" and

evaluate the performance on some held-out sets. The standard neural net way to do it is to
set up layers and do backpropagation with a loss layer. A example network is sketched in
Fig. ?77.

:iif+1 = A,flt + B,)_C)t

w >

S - 5 -
X0 X1 X2 Xnj-1

Figure 2: An example network. Each weight block stands for Eq. 77 with two inputs. The
weights are A’ and B’. The initial estimate of the state is set to zero vector.

0
— W

]
|

2(-,-)| :loss layer

Now, we have a setup for a PyTorch implementation and we can use our standard ap-
proach (i.e. run GD, SGD, ADAM, etc. with appropriate learning rate, initialize the weights
W). Note that the same weights are shared across all layers. For backprop, the gradient of

4

all the losses are summed up. All the cautions taken previously in this course should also be
done like avoiding exploding and vanishing gradients. An open question to those who know
Kalman filters well: if you initialize the weights to the Kalman filter as it should be, what
would happen to the gradient in backprop?

In response to a student’s question: If the weights are initialized to the analytical (sym-
bolic) solutions of the Kalman filter in steady state, one would expect the gradient to be
zero. But when you do it on PyTorch, the backprop is actually done on a per sample basis
and due to the presence of observation noise, the gradient is not going to be zero. In general,
there is no way to get zero loss on a single sample even at optimality. Instead, under the
average of the right distribution, all the gradients cancel out.

3.2.2 The Harder Case

What if we only have the observation traces (i.e. (¥;);’, for trajectories j = 1,---,m)
without knowing the ground truth?

You can modify your estimator such that it predicts the next observed state ;. The network
in Fig. 7?7 needs to be modified. Several things to do: use C' in Eq. 7?7 as an additional
learnable parameter, calculate the loss on next-observation prediction. This is left as an
exercise for the students.

4 RNN

The example in the previous section is of a linear model. An RNN is a generalization
to include non-linearity to make more expressive models. Generic recipes to include non-
linearity: 0. add activation, 1. replace matrix multiplies with MLPs. For the latter, namely,
one can take Eq. 77 or a W block in Fig. 7?7, writing it as the block matrix multiplication

h] @

Ty

A/}Alt —|— Blft - |:A/, B/:| |:

and replace it by MLPs. Now, a box in the network becomes
hir1 = MLPyy (he,) (5)

Note that here & instead of & is used as the deep neural net community don’t use h and
the reason is that you are agnostic as to whether there’s actually a true h or not. Another
modification from Kalman filter is that biases are added.

To make the network more expressive and sophisticated, one can expand the MLLPs by adding
more weights. This will be talked in detail next time.

