
CS 282 Deep Neural Networks Spring 2023

Lecture 16: Autoencoding & Self-supervision
Lecturer: Anant Sahai Scribe: Xin Chen, Yun Yeong Choi

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

16.1 PCA & Self-supervision

In many contexts, we lack enough labeled data so we may need unsupervised learning. There are two kinds
of unsupervised learning which are (1) Dimensionality reduction style(pre-regression) (2) Clustering style
(classification). In this lecture, we will talk about PCA-like dimensionality reduction in deep learning, also
known as self-supervision.

16.1.1 PCA

The standard PCA formulation for dimension reduction with full SVD is shown as Equation 16.1

Xtrain =
[
x⃗1 x⃗2 . . . x⃗n

]
= UΣV ⊤ (16.1)

where Xtrain ∈ Rd×n, U ∈ Rd×d, Σ ∈ Rd×n and V ∈ Rn×n. The mean of Xtrain is removed in this case.

Now we want to project Xtrain into a lower dimension subspace (rank k) S which is a span of the first
k columns of U . Note k < d and S is actually a subspace of the space Rd. That is to say, S =
span(u⃗1, u⃗2, . . . , u⃗k). And the reduction operation is U⊤

k Xtrain that maps Xtrain into Rk, where Uk is the
concatenation of the first k columns in U . In a downstream task when we have a lot of unlabelled data with
high dimensions, we can do PCA to reduce the dimension and hope that a good regression model can be
fitted with a few data points of low dimensions.

16.1.2 Self-supervision

In self-supervision, we use a similar idea to project the Xtrain into a lower dimension but using a gradient
descent method. Consider the optimization task in Equation 16.2.

argmin
w1,w2

1

n
∥X − w2w1X∥2F (16.2)

where w1 ∈ Rk×d and w2 ∈ Rd×k. w2w1 is a rank at most k linear operator that maps Rd to Rd. Also by the
Eckart-Young theorem, we know that at the optimality of minimization, w∗

1w
∗
2 is a projection to subspace

S = span(u⃗1, u⃗2, . . . , u⃗k).

From another point of view, we are projecting X to S = C(w2). The dimension reduction operation here is
w1X and at the optimal point, w1X should be able to capture exactly the relevant degrees of the freedom
of X. Note that here w1 doesn’t necessarily need to have orthonormal columns.

16-1



Lecture 16: Autoencoding & Self-supervision 16-2

The architecture of this autoencoding is shown in Figure 16.1. Input X is fed into the encoder-decoder
model and output X̂. The loss L(X, X̂) is then calculated.

Figure 16.1: The encoder-decoder of a self-supervising model.

16.1.3 Autoencoding as Denoising/Purification

Now let’s think about w1X as a purification process. First, consider this problem from the aspect of PCA.
We have a reality (a ground truth) of k-dimension. However, due to the interruption of d-dim noise, what we
really measure is a d-dim signal from d different measurements. We can consider this as d linear operation
plus measurement noises. Then the covariance of this signal is like Equation 16.3.

∑
=



σ1 + σnoise
1

. . .

σk + σnoise
k

. . .

σnoise
d

 (16.3)

where σi is the singular value of the ground truth and σnoise
i is the singular value of the noise. Now if we do

PCA to only retain the dimension that corresponds to the first k singular values, and recover the dimension,
we are denoising this measurement. The operation here can be considered as UkU

⊤
k X.

In the encoder-decoder architecture, w2w1X is doing the same thing. Instead of using w2w1 as the encoder-
decoder, we can also use non-linear architecture as the encoder-decoder. Note that in this linear condition,
the w2w1 cannot be identity since an identity matrix cannot be computed by multiplying the encoder and
decoder that has a “choke” point inside. However, when we use larger non-linear networks as the encoder-
decoder, the learned weights may be just an “Identity” matrix. Therefore, we need to do regularization/data
augmentation.

Questions:

• Can we enforce weight sharing between w1 and w2?
→ Yes. UkU

⊤
k is an answer it self. However, in this case, we will have few parameters and confront

with the issue of non-convexity. We may not solve the optimization task so we need to be careful when
there are fewer weights. And to get Uk, we need to regularize the loss function.

• What will happen if we initialize w1 and w2 using zero matrix?
→ The gradient is zero and cannot update weights.



Lecture 16: Autoencoding & Self-supervision 16-3

16.2 Data Augmentation in Self-supervision

16.2.1 Regularization with Noise

Instead of directly feeding the input X into the encoder-decoder, we can first add noises into the input. The
modified architecture is shown in Figure 16.2. By adding noises to the input, we hope that the hidden repre-
sentative can have some purification. Note that in autoencoding, the dimension of the hidden representative
is not necessarily smaller than the input. We can also increase the dimension of the input matrix to get
purification.

Figure 16.2: The encoder-decoder of a self-supervising model, with noises added.

16.2.2 Regularization with Masks

Another regularization method is to mask some of the elements in the input matrix, which is like a gen-
eralized noise method. For example, the input X⃗ is

[
1, 2, 3, 4, 5

]
. We can mask two elements to get

X̂ =
[
1, ?, 3, ?, 5

]
. The “?” can be represented in several ways. We can use a “0” as the mask, so

X̂ =
[
1, 0, 3, 0, 5

]
. This looks like a data dropout process. Or we can assign a random value to “?” and

record the positions of the mask using
[
1, 0, 1, 0, 1

]
. The intuition behind using masking to reconstruct

the input is that we have a matrix with “strong” dimensions and “weak” dimensions that are missing. This
is similar to a lower-dimension matrix of the input. Now we want to reconstruct it by filling in the missing
elements. Also, the architecture of the encoder-decoder is not necessarily like Figure 16.2. We can also do
operations inside the encoder or decoder to block the flow of some directions. This is like adding a generalized
“noise” inside the encoder/decoder, as shown in Figure 16.3.



Lecture 16: Autoencoding & Self-supervision 16-4

Figure 16.3: The encoder-decoder of a self-supervising model, with masks inside encoder/decoder.

16.3 What we wish this lecture also had to make things clearer?

1. We want to know more examples of using autoencoding in downstream tasks.


	PCA & Self-supervision
	PCA
	Self-supervision
	Autoencoding as Denoising/Purification

	Data Augmentation in Self-supervision
	Regularization with Noise
	Regularization with Masks

	What we wish this lecture also had to make things clearer?

