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17.1 Transformers

17.1.1 Recap: Attention

In previous lectures, we were introduced to the notion of the attention mechanism, which acts as a differen-
tiable soft hash table. Specifically, attention takes queries ~q as an input and returns a soft (“blended”) version

of the value ~v associated with the most similar key ~k to ~q. Initially, we viewed the attention mechanism as a
substitute for U-net style information flow. We also saw this concept in the context of sequence-to-sequence
modeling where we discussed RNN-based encoder and decoder modules. The observed limitation with the
naive RNN encoder and decoder was brought on by the bottleneck state that passes from the former to the
latter. This is illustrated in Figure ??.

Figure 17.1: RNN Encoder-Decoder modules for sequence-to-sequence modeling without attention. Observe
the explicit informational bottleneck between the encoder and decoder [1].

This bottleneck gives no explicit way of distinguishing contextual information from earlier in the input
sequence versus later in the sequence. Augmenting the decoder with cross-attention enables the capability
of looking up relevant information from different points within the encoding process. Cross-attention is
implemented using learnable mappings hencoder → ~k,~v between the encoder states and the associated (key,
value) pairs as well as learnable mappings hdecoder → ~q between the decoder states and the queries. See
Figure ?? for an illustration.
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Figure 17.2: RNN Encoder-Decoder modules for sequence-to-sequence modeling with attention [1].

The utility of attention isn’t limited to just a memory mechanism from the encoder to the decoder; rather,
self-attention can also be beneficial to look up relevant information from the past within the decoder itself.
This amounts to learning additional mappings between decoder states to associated (key, value) pairs and
also a mapping from decoder states to query these past soft hash table entries.

Remark 17.1 As we incorporate cross- and self-attention mechanisms into our design, we alleviate the
bottleneck and burden on the information that the state passing from the encoder to the decoder needs to
carry. We can also view this from the following viewpoint: initially the bottleneck was having a regularization
effect due to its limiting inductive bias. By adding attention we are enhancing the underlying function
expressiveness and thereby reducing the regularization.

Remark 17.2 Attention allows each step of the decoder to look up one item from memory. However, it is
clear from natural language that this can be quite limiting. For instance, correct conjugation of verbs can rely
on several bits of information: e.g. plurality, gender etc. This raises the concept of multi-headed attention.
For m-headed attention, each step of the decoder performs m lookups across m attention heads. Note that
these are m attention mechanisms occurring in parallel with independent queries and (key, value) pairs. The
lookups are then aggregated after retrieval within the RNN state update.

17.1.2 Global Positional Encoding

While attention provides a proxy for memory as a soft hash table, there is no explicit embedded notion of
position or time. We need to find a clever way of enriching the input with positional details. This would, in
turn, allow attention to encode positional information in the lookup table. This gives queries the ability to
ask for either of contextual or positional information.

Consider a clock signal ~c :=

sin(·)
cos(·)

...

 that contains temporal information on the input token ~i. There are

several ways of potentially embedding ~c into the encoder input. We first consider global positional embedding
strategies:

Choice 1: Append

[
~i
~c

]
. This has the disadvantage of increasing the dimensionality of the encoder input

which would increase the computational burden.
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Choice 2: Add~i+~c with ~c constructed to have same shape as~i. This has the advantage of not adding to the
number of parameters needed within the RNN. Moreover, it may seem strange that we are superposing the
input and temporal information. However, this works due to the incoherence between the two objects, i.e.
in high dimensional spaces ~i and ~c will be approximately orthogonal. This is often what is done in practice.

We can also consider relative positional embedding. Instead of adding temporal information into the input
embedding, we first think about where we want to use it. Temporal information is relevant in the lookup
process of the attention mechanism. We modify the inner products during lookup:

〈~q,~ki〉+ b~i−~j

where b~i−~j is a learned bias term and ~j is the position of the query. To understand this, we connect it to

the idea of superposition explored in global positional encoding. Suppose we can decompose ~q and ~k into a
summation of informational and position components, i.e. ~q = ~qinf + ~qpos and ~k = ~kinf + ~kpos. Then taking
the inner product

〈~q,~k〉 = 〈~qinf,~kinf〉+ 〈~qinf,~kpos〉+ 〈~qpos,~kinf〉+ 〈~qpos,~kpos〉,

where the cross-terms are approximately zero due to orthogonality in high dimensions. The positional inner
product can be related to the learned bias term b~i−~j introduced previously.

17.2 Transformers

Now that we have an attention mechanism to lookup past information, the natural question arises of whether
we need any RNN state at all [2]. The surprising answer is no: hence the name of the seminal paper “Attention
is all you need” [2].

The basic framework for a transformer block is presented in Figure ??. We walk through how this is generated
below.

Figure 17.3: Schematic of a basic transformer block.

1. The input to this particular block in the transformer is xt,l, where t is the sequence index and l is the
layer. There is no “horizontal” input coming from the previous time step (outside of the shared table)
as we have removed the RNN state. Gradients are thus directly routed through the query to the past
time step being retrieved, avoiding any recursion and solving the dying / vanishing gradient problem.

2. Generate keys for the ith attention head, 1 ≤ i ≤ m, by the linear transformation W k
i . Generate values

similarly and put them into a table specific for the lth layer in the transformer.

3. Generate m queries also using linear weights, and query the table using an attention block. For multi-
headed attention, we would supply m queries and get m outputs, and we’d also put m key-value pairs
into m tables in the previous step.

4. Concatenate the outputs of multi-headed attention. In order to make the residual input connection
possible, we need to make the values in our table 1/mth the size of the input.

5. Apply a layer norm, which often skips debiasing and only applies scaling to help handle gradient
explosion as we add more layers.

6. We then process with a shallow MLP with one hidden layer. The idea is that we only have one
nonlinearity per block (one for the multi-head attention, one for MLP).
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Remark 17.3 Transformers have a fundamentally different way of looking into the past than traditional
RNN-style models that originate from signal processing ideas (infinite impulse response filters). The lat-
ter are largely motivated by considering linear operations on the past, whereas the transformer lookup is
fundamentally nonlinear due to the softmax.

Remark 17.4 Transformers are still causal as they are only allowed to query past entries in the table,
whether that’s from self- or cross-attention. This leads to a practical limit on the size of the table, and we
need to drop things from the far past out of the table.
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