EECS 182 Midterm Review

Stephen Krider, Joyee Chen

Saturday, April 8 for the "lecture" of March 20

This is designed as a midterm review sheet. Where possible, at least in the first few weeks, the providing of
essential equations is shared with a strong focus on conceptually describing the key topics and ideas — because
after all, your midterm cheat sheets will already have a natural tendency to cram themselves with equations
under pressure. These reviews, on the other hand, focus as much on the "what" as on the "why".

Contents
Weeks 1-2: the basics of machine learning, optimization, and regularization 1
Week 3: Initialization and advanced optimization 5
Week 4: Conv nets, batch norms, and dropout, oh my! 6
Week 5: ResNets and ConvNeXT 9
Week 6-8: Graph Neural Networks, RNNs, and attention 10
Graph Neural Networks 10
Aggregation Functions L 11
GNN Layers oo 11
Graph Representation e 12
Normalization e e e e e 12
Lossin RNNs o o e 12
Pooling L 12
RNNs 13
Nonlinearities o e e e e e 13
Normalization in RNNs o0 13
Beam Search 14
Attention 14
Positional Encoding 15
Self-Supervision / Autoencoders 16

Weeks 1-2: the basics of machine learning, optimization, and regu-
larization

A great amount of credit is due to the various Spring 2023 scribes for 182 who I distilled here.

Machine learning: the basics

Week 1 Monday (1/23)
This lecture is, in general, about ML review.

The simplest application of ML is in supervised learning, which is defined roughly as the learning of patterns
among datasets where each piece of data already has a label or target.

One paradigm of supervised learning is the optimization-based paradigm, where the basic structures — the
basic types of objects — are "training data" and "model". What’s the relationship between the two? Training
data acts on the model. What are the specifics within the two? Training data must have "labels" attached to
each datapoint, and models must be tunable or changeable by selecting certain values for variables called
"parameters".

Training via Empirical Risk Minimization: Choose the ideal parameters, such that the average loss is
minimized.

However, the word "average loss" is implicitly with respect to an argument called "the data', which may be
misaligned with what we really want — minimizing error upon the real world.

This is where the idea of a mathematical proxy comes in: an assumption about the underlying data’s
probability distribution, P(X,Y). The obvious complication: what happens when we aren’t just given a P(X,
Y), or even have any access to it? Solution: partition or slice all the data into a training-set and a test-set.
Then train the model — i.e. fit all the parameters using the training-set only. Finally, calculate test error
(basically just average-error) on the test error. The independence generated by not mixing the two sets in
either phase means test error should be a good representation of real-world performance.

Loss functions are basically functions mapping vectors, or matrices, or collections of data into a real number.
That real number should represent the amount of error sustained by the model with respect to some ground
data.

But what if our optimizer’s loss function (at least naively) fits the loss function that we want, L., like a
square peg into a round hole? The solution seems to be to define an "adaptor loss" function, or a surrogate
loss: a function that has all the abstract properties Ly, needs, but also meets the concrete requirements
needed to be pluggable into the optimizer framework.

Overfitting: the problem where your trained model’s results (weights) adheres too precisely to a particular
dataset. (Like preparing too specifically for the SAT math section instead of building up general math
skills, so you get confused whenever any open ended problems come up in college.) Its symptoms: crazily
precise/crazily large values of weights, often combined with bad performance on a test set. Its cures: Adding
a regularizer function during training, or choosing to make extra complexity "not exist in the first place" by
rewriting your model to have fewer parameters.

Optimizers and Gradient Descent and Neural Networks

Week 1 Friday (1/27)
This lecture is about optimizers and neural networks.

The primal question we’ll start today off with is, "How do we tune a model’s parameters in the first place?"
We’ll have to use an optimizer, or metaphorically a "tuning-machine", and the most basic one is gradient
descent.

In a nutshell: gradient descent takes in a loss function and a vector of parameters, and then behaves as if the
loss function was a slope, and the parameter location was a ball rolling down the slope. More precisely, at
each timestep from t=0 (until a specified "close-enough" convergence goal is met), gradient descent will first
update the position of (or value of) the parameter vector itself based on one timestep of motion down where
the steepest downslope is. Then it will find the training loss for that new position, efficiently based on the
aforementioned slope/gradient value.

The devil’s in the details, though. One problem with that is in the loss function itself — in order to get a loss
value, you have to loop through every single point in the dataset, a real hassle. Literally O(dataset size) time
at best.

So what do we do?

Letting n be the dataset size, we can actually calculate the training loss using just a random subset of points
Npatch <K N, and use that sample to represent the dataset in its entirety.

This seems to have solved so many of our issues. Now let’s turn to seeing how the "tuning machine" itself
operates.

What does the step size do? It generally determines how fast the gradient descent algo converges, though it’s
not as simple as "increasing step size = zoom zoom". A great result is that in order to converge at all, the
learning rate/step size itself has to decay.

On neural networks:

For the thorny question of what a "neural network" actually is, I defer to Mathias Weiden in his scribe notes
for Sp2023 Lecture 3: "A neural net is a computation graph/analog circuit that plays nice with automatic
differentiation or “back propagation.”

So what? Can we clear up the magician’s fog here? What use do these so-called "circuits" have?

We want these circuits to do the heavy lifting of prediction or classification for us, of course. And we want to
bake into them two qualities:

1. Expressibility, which is being able to "represent a wide variety of functions".

2. Learnability, which is equivalent to speed: "the ability to learn functions without too much trouble."
So how do we approximate such a "wide variety" of functions?
Answer: "linearize them', approximating them by a series of short straight lines!

From this ideal answer comes the real function of ReLLUs, which are basically elbows connecting two lines
at different angles from each other...connect enough ReLUs together and you can approximate almost any
function.

Various views of OLS

Week 2 Monday (1/30)
In this lecture we discuss gradient descent, OLS, and ridge regression.

Reminder: a single fully-connected-layer ReLU network can be represented by f(z) = WoReLU (W14 b1)+bs.
Let’s start with the basics: what’s the purpose of regularization in the first place?

It’s helpful when you want to bias the optimization to learn a certain property along with the patterns that
we like, or when we want the optimizaiton to learn a certain property of the representations of the patterns.

A favorite example of this is sparsity — favoring more zeros in the vector representation of the learned patterns,
i.e. "simpler" models of fewer parameters.

Let’s concretize this idea of regularization by considering a standard equation and use case.
The standard equation where regularization is used:

L= (1/n)zltrain(yi> f(xz)) + R
where R is the regularization term.

The standard use case is that of least squares with ridge regression: adjust w so as to get y closest to Xw, or
minimize (||y — Xwl[2)* + A(|Jw]|2)?.

This simple use case can be interpreted in five different perspectives:

1. Perspective 1: Gradient descent:
weyr = (1 - 20A) - we + 20X ' (y — Xu).

2. Perspective 2: Leveraging SVD for better understanding via OLS:
Xw = y can be rewritten as > = g, which can be expanded to

_ L4; i< min{n,d)
w; L .
1] T O

with two cases for ¥ being tall or being wide.
3. Perspective 3: Leveraging SVD for better understanding via Ridge Regression
4. Perspective 4: Gradient Descent

Now out of intellectual curiosity, how can we implicitly use the idea of ridge regularization, without explicitly
adding an additive term "+R"?

Answer: Implicit regularization!
1. "Adding extra data"
2. "Adding extra features'

Regularization

Week 2 Friday (2/3)
This lecture is on a potpourri of topics surrounding regularization.

We start off where we ended last lecture, on different interpretations of regularization in a least squares use
case.

One that didn’t come to mind: an argument from probability!

Assume, as a leap of faith, that the we actually know a multivariate normal distribution generates the
predictor variables.

Now let’s translate this into the language of EECS 126 (upper div probability): what is the MLE of w, the
maximum likelihood estimate? (More precisely: given w, what’s the maximum likelihood of the data?) Some
126 wizardry shows it’s exactly the same as the plain OLS solution.

The ridge regression solution (adding a AI term to the X7 X term) likewise has a probabilistic interpretation
as the MAP estimate of w, or the maximum a posteriori estimate. (More precisely: given the data, what’s
the most probable value of w?)

Another interpretation (that might appeal to some CS 170 takers): kernel ridge interpretation, prominent for
its X X7 term in place of the usual.

Wridge = XT(XXT + M)ty

You can easily do algebra to show kernel-ridge gives the same equation as regular OLS. But the key
motivation for kernel-ridge is its ability to resolve the parameters (our model can learn) as clearly direct
linear combinations of data points (which we have).

A corollary: the actual meaning of X X7 itself is a matrix containing just inner products between certain
data points, i.e. a similarity metric.

What is inductive bias, in a nutshell? It’s the tendency for gradient descent to go in one direction over
another. A SVD expansion of gradient descent equation will show that, roughly, gradient descent will "move"
the parameter-vector in a decreasing priority of subspaces, where "priority" is given by their singular values.

Week 3: Initialization and advanced optimization

A great amount of credit is due to the various Spring 2023 scribes for 182 who I distilled here.

Initialization and Optimizers

Week 3 Monday (Feb 6)
This lecture is about initialization and optimizers, leading up to the concept of momentum.

In particular, we start off with the little-considered question of how to initialize ReLLU weights w and b.
(Reminder: elbow location at e = —b/w.)

But what are our goals for an ideal ReLLU initialization again? We want the input to each ReLU layer to be
centered near 0, to effectively discriminate between points...so a next preliminary goal might be to initialize
ReLU weight w to N(0, 1).

(Important: the next two paragraphs are just about initializing w, not the bias b.)

First attempt: Xavier initialization, where we try to twiddle weights so as to standardize variances across
each layer...more specifically, choosing them i.i.d. from N(0, 1/d). Here, we face the significant problem of
actually misjudging the variance-sum by a factor of two because on average, half of the outputs are 0 so the
real number of inputs that actually behave like random variables is d/2.

Second attempt: He initialization (Kaiming initialization). Basically the same as Xavier initialization...but
drawn from N(0, 2/d) solving the problem!

Optimization w.r.t. learning rates and singular values

Week 3 Friday (Feb 10)
This lecture focuses on optimization in a deep learning context, as opposed to a traditional context.

What’s the big difference, you might say?

In traditional optimization, according to the Lecture 7 scribe notes, "the objective function is exactly what
we would want to optimize over." But in deep learning, we’re often forced into introducing a surrogate loss, a
middleman between the raw training data and the clean loss metric; that surrogate loss renders the idea of
"optimizing" more vague.

Also, convergence speeds are more severe of a matter in neural networks.

Counsider learning rates for example, on the simple OLS gradient descent. We know that the convergence
rate for the ith dimension is |1 — 2no2|, and in general, smaller values of that absolute value imply faster
convergence (error decaying quicker).

Amidst such seeming certainty, let’s shift our focus to underdetermined cases (read: non-square data matrices).
In the case of "billion of parameters, just a few points", EECS 127 (upper div optimization) showed us that
blindly applying OLS formula resulted in min-norm solution value of w.

As it turns out, gradient descent (with parameters initially at 0) also converges to a min-norm solution (an
argument you can make by seeing everything "lives" in the plane of col(X7)).

Can you see how a similar argument applies to SGD?

But we aren’t out of the woods yet when it comes to gradient descent. Remember the |1 — 2no?| equation for
convergence rate? If we make the learning rate small, convergence will be slow, but if we make the learning
rate too large, then combining that with large singular values can create oscillation at high frequency among
successive w. This problem leads us to the abstract solution of a low pass filter. This solution has often been
concretely implemented as an exponential moving average of the input.

Such an exponential moving average can be encapsulated in the idea of momentum: a weighting system
that adjustably trades off current gradient against previous gradients.

teyr = (1 — #)ade + Fuill)
Wipp = Wy — Pigg
(Source: Spring 2023 CS182 Lecture 7 scribe notes)
Here the a terms represent a summary statistic or weighted average of all the gradients so far, and g represents
the amount of importance you think the weighted average should give to the current gradient.

But a subtle problem still arises: even though momentum ensures representation across all different gradients, it
doesn’t have good representation across all the different singular values, with only 0,4, and o, represented.
This justifies the idea of adaptive momentum, or adam, method:

gy — (1 Al 1+ AV
(i {(0))?
e = (1 — Aeg — A" :
[Pl
g4 1|:I| = rr.‘f|i'| - :l:|-—t|:l+.I i
teqalt] +E

(Source: Spring 2023 CS182 Lecture 7 scribe notes)

Week 4: Conv nets, batch norms, and dropout, oh my!

A great amount of credit is due to the various Spring 2023 scribes for 182 who I distilled here.

Conv Net Basics

Week 4 Monday: Feb 13

In this lecture we’ll move from the microscale to the macroscale: from particularly simplified and abstractified
models of how an idealized weight variable gets changed, to more real-world models of where learning can be
used with less reference to particular algorithms in their entirety.

Consider the case of convolutional neural networks (convnets, or CNNs). You might associate them with the
image classifiers used to locate the faces in self driving cars or cute kitty photos.

They have three great properties that will motivate anything designed on them:
1. 1) Respect locality
2. 2) Respect invariances/equivariances within dataset
3. 3) Support a hierarchical structure and multiple resolutions

But those ideals do not help us actually visualize a convnet. What does: convnets are based around the
notion of a filter, an array or matrix (often called h) which is dragged along all parts of a signal/image.
At each stop along the dragging, the filter gets convolved with the local signal/pixel values (a form of dot
product) and the resulting product becomes the output of a convnet. Or at least one layer of it.

The nifty equation:

o

o(t) = (u+h)[t] = D ulr]hlt — 7]

where u is the input signal, h is the filter (also called a "kernel"), and o is the output.

The real trick, that turns this filter-and-dragger notion from a skeleton into an evolving organism, is that the
filter values are learnable.

Let’s try to visualize a more concrete notion of a ConvNet.

Suppose we have a 2D picture. Those are 2 dimensions, but when working with color images, we’ll add a
third dimension called depth (with "channels" red, green, and blue). But a great workaround is that one can
collapse height and width into a single dimension, by "lining up" all the pixels in a certain order: left to right
first row, then left to right second row, ...

Now consider a 2D video of many frames of pictures. Here the notion of "batch" manifests itself as a collection
of objects of type "entire picture", rather than "pixel": we can choose all the frames from, say, the 0-second
mark to the 10-second mark as one batch, from the 10 to 20 second mark as batch 2, ...

Now, for this 2D video case, we can represent an entire dataset — an entire video — as a 3 dimensional
rectangular block: pixel position (height and width combined) as dimension 1, channel as dimension 2, and
batch as dimension 3.

Now that we understand how inputs are represented, lwe can see how they are normed, or grouped together
in certain ways depending on certain processing needs:

Figure 1: Different types of norms (Source: CS189 Fa22 Lecture 9 Scribe Notes)

Batch Norm Laver Norm Instance Norm

s

-

Convolution Output Size Considerations

But still, we haven’t yet touched the matter of a convolution’s output size. Think first of an idealized filter, a
one-dimensional strip.

That convolution will likely have characteristics like stride, the number of spaces the filter skips over from
one convolving to another, and padding, the number of spaces on the edges (both edges!) of the input signal
that ought to be replaced with a standard number (usually zero). Then, by a simple counting argument, the
dimension of the output can be shown to equal

W—Ig +2P | |

where W is the input dimension.

Downsampling and Upsampling (source: "Transposed Convolution Demystified", towardsdatascience.com)

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 x Wi4 D, x H/4 x W42

D, x Hi4 x W/4

Input: High-res: High-res: Predictions:
ctions:
IxHxW D, x Hi2 x Wi2 D, x HI2 x Wi2 Hx W

In general, downsampling is the extraction of information, densifying the amount of information from
a picture to a smaller one; upsampling can be said to be the sparsifying of information, copying it and
distributing it over a wider area.

Batch Norm and Dropout

Week 4 Friday: Feb 17

In this section we focus on the concepts of batch normalization as a sort of "classical" improvement to convnets,
but then shift our attention to the much more "modern" improvement generalizable across all neural networks:
dropout.

Standard normalization, upon a dataset D, has the goal of making the elements of D have mean equal to
zero and variance equal to 1 (with many statistical advantages and efficiencies resulting from it). This is
classically done by calculating the mean and standard deviation of the entire D, then subtracting the mean
from all D’s points, and dividing the result by the st dev.

Batch normalization is a way to make standard normalization yet more efficient in the computation stage:
because calculating means and variances are expensive, we can just calculate them both from a randomly
chosen batch of datapoints B from D, instead of D itself. Then do normalization using those mean/sd values
as though they represented all D.

Let’s flesh this out with different colors, courtesy of Geleta et al. in their scribe notes for Lecture 9:

The essence of batchnorm (BN) lies in computing & from z in the test set, both represented by blue, but
normalizing using means and standard deviations in the training set, both in red.

T — p
T

T =

A motivating problem: a single batch might not represent the entire dataset very well (think of picking 30
people at random from the American population!).

A partial solution: pick multiple different batches By from D, and try to include them all in normalization.
But how do we "include them all'? That’s the motivating question for our next BN refinement: compare x to
the average of the batch-means and batch-SDs!

_ 1K .
€T K £uk=1 'U"'"

L\—-LH

K £ ak=1 T}

:—E_

A further refinement to BN can come from the concept of normalizing x by the mean and sd of the last epoch
of training:

r — p\t

And for the greatest flexibility, in those rare cases you want to stretch your data to a known SD that isn’t 1,
or a known mean that isn’t zero, you can add trainable parameters v and (like so:

1: —
BN, 5(z) = - T‘“* + 3

Dropout addresses a different problem. It is all well and good to start training on fully connected layers, but
that feels somewhat like saying "everything in life is causally connected, in some way or another'...it does not
bode well for good interpretability of the model, when a sparser model with fewer causal links will capture all
that is needed.

The gist of dropout is to go over all the output of neurons, and randomly set some of those outputs to zero.
The probability of zero-setting, p, is a hyperparameter you can control or optimize.

On a deeper level, dropout can be motivated in terms of the resilience it brings to neural network training as
a whole: instead of the brittleness of one model when it comes to the bias variance tradeoff, running dropout
multiple times can lead to creating a horde of different models on one dataset, each slightly jittered — and the
advantages of CS189 style ensemble learning ensue.

Week 5: ResNets and ConvNeXT

A great amount of credit is due to the various Spring 2023 scribes for 182 who I distilled here.

ResNets and ConvNeXT

Week 5 Monday: Feb 20
In this section I discuss ResNets in theory and in practice.

The essence of ResNets is the residual connection, a sort of express train amongst the local trains that is
the general layer-by-layer connection: residual connections skip the process of having info passing and likely
modified through different layers, and instead have the info travel directly from the input to the output.

Now we ask, what do we put in the F block? The two choices discussed in lecture, at least:

Thankfully, the choice of the best (for trying to model a function itself) is rather more down to a technicality:
the left block directly outputs from the ReLU’s teat, so can only emulate functions with nonnegative outputs!
But the right block outputs from a weighted output of convolutions, so can model any real-output function.

LA N - O

f
I
X I
{z y K F y

1

\ /

_-— o o . . O O e .

Figure 2: The essence of resnet: a skip-connection (Sp23 Lecture 10 scribe notes)

Figure 3: Two proposals for architectures (Sp23 Lecture 10 scribe notes)

ConvNeXT is considered a radical improvement on ResNet, with only surface level architectures the same.
ResNet vs ConvNeXt architecture (Sp23 Lecture 10 scribe notes):

ResNet Block ' ConvNeXt Block

256-d ! 06-d
w | w
[xtea || [<796 |
I
BM, RelLlU - LN
W ' v
[3x3, 64 J ! [1x1, 384]
I
BN, RelU | GELL
w . L
[1x1, 256] : [1=1, 896]
BM ;
w . L
W , W
N, . L/
“FIeIU I v

In particular, a new activation function called the GeLU (Gaussian ReLU) has been introduced: GeLU (z) =
x®(x) for ®(x) being the Gaussian cdf of x.

Week 6-8: Graph Neural Networks, RNNs, and attention
Graph Neural Networks

Graph neural networks are a type of neural network designed to work with graph-structured data.

10

Definition. A graph G = (V| E) consists of a set of vertices V and edges F = {(u,v) : u,v € V}. We
often define labels on E and/or V: wg(e) : B+ R w(v) : V — RY,

The purpose of a GNN is to infer some value from the graph’s labels. In practice, this task manifests in two
forms:

¢ Graph-Level Tasks. Inferring a value from the entire graph.
o Vertex/Edge-Level Tasks. Inferring a value for each edge/vertex.

Where our task is to learn 6 given training data.

Note that sometimes we have only one single graph to work with - for instance, a social network.
In this case, we split the graph into (Viest, Ptest) and (Vivain, Etrain)-

Aggregation Functions

GNN layers have the inductive bias of spatial locality, that all relevant information about a node is contained
in its local neighborhood. Formally, we wish to learn an aggregation function fy:

fo(o,N):veV,N ={u: (v,u) € E} (1)

Where N is the neighborhood of v. Importantly, fy must be permutation invariant in NV, as we have
the inductive bias that F,V are unordered.

Possible aggregation functions:

1. Sum aggregation:

f(v,N)szTv—FZwTu (2)
ueN
2. Mean aggregation:
1
f(v,N):wOTU—FWZwTu (3)
ueN
3. Max aggregation:
f(v,N) :wgv—l—maﬁfchu (4)
ue

Note the similarity to convolutional neural networks in that we learn a single function / filter / kernel that is
then applied to every position.

GNN Layers

A single GNN layer consists of multiple learned aggregation functions, mapping multiple input channels to
multiple output channels in much the same way was CNNs. Additionally, we incorperate nonlinearities to
increase the expressivity of our network.

Depth in a GNN has an important implication. As a GNN grows deeper, the receptive field of the network
increases. For example, a 2-layer GNN can take into account information from a node’s “two-hop” neighbors.

We also incorporate residual connections. Formally:

11

2@ = fOEED Ny 42D iz eV (5)

Residual connections assist in allowing the gradient to flow to earlier layers in the network without “dying”
or “blowing up”.

Graph Representation

Defintion. The adjacency matrix of a graph is defined as

[A];; =

1 if there is an edge from i to j
0 otherwise

A need not be symmetric, such as when G is directed

Definition. The degree matrix of a graph is defined as

deg(v;) ifi=7j
Dl = 7
[Dlis {O otherwise (™)

We use the degree matrix to define ANormalized — AD=1 and $A"SymNorm = D{-1/2}AD{_1/2} Definition.

The Laplacian matrix of G is L = D — A. Note that L; sums to zero. Additionally, we define LSymNorm —
I — ASymNorm.

The Laplacian provides a convenient way of representing the graph as a matrix. Importantly, A¥ has
[A*];; = n where n is the number of ways j can be reached with exactly k hops from i.

With our definition of A € RV*N and vertex labels X € RVXC applying the sum aggregation
function to G is similar to a convolution of dimension 1 x N on AX. This establishes the parallel
between GNNs and CNNs.

Normalization

Layer norms in GNNs are similar to layer norms in CNNs. In GNNs, we normalize across batch entries and

nodes, keeping channels separate.

Loss in RINNs

One important design choice in RNNs involves deciding whether to consider only the final hidden state or the
entire sequence. In the former case, we use a loss function that is only dependent on the final hidden state.
In the latter case, we use a loss function that is dependent on the entire sequence.

In the former, we may often run into issues where earlier inputs have less of an impact on model output.

Pooling

In GNNs, pooling is a technique applied to downsample the graph structure and reduce the computational
requirements of the network. Usually, it involves merging a node into its neighbors. However, it is often
domain-specific, so for our purposes we assume the dimensionality of the graph stays constant.

12

RNNs

RNNs are generalizations of a learned Kalman filter. For more information about Kalman filters, see
https://people.eecs.berkeley.edu/~pabbeel /cs287-fal5/slides/lecturel4-KalmanFiltering. pdf

ilt = W;}jjlt—l + Wﬁ@ft + g

Where we learn W, b from data, modeled as one of the following:

1. An {(i_it,ft)} sequence.

2. An z; sequence, where ;1 is predicted conditioned on $h_t3. {zy, z;} where z; is a linear function of
$h_t To generalize to RNNs, we add a nonlinearity - for example, rather than h; as an affine function
in x; we use a MLP.

To increase expressivity, we have a few options:

o Increase the dimensionality of the hidden state
o Compose RNN filters (standard approach)

A cute puppy <EOS=>
Yia Yi2 Vi3 Yia4

tt 1

ot ot ttr 1
Til T2 Ti3 Yi,0 Yi,l Yi2 i3

mignon chiot Un <START=> A cute Puppy

Figure 4: A composed RNN filter. Source: EECS 189 Fall 22

Nonlinearities

Main challenge in RNNs: very long chains of input/output to backprop through, leading to dying or exploding
gradients. Exploding gradients prevent the network from learning anything, while dying gradients prevent
the network from handling long-range dependencies.

To handle this, we employ saturating nonlinearities (figure 2). Rather than using a nonlinearity such as
ReLU with no upper bound, we use a nonlinearity like sigmoid or tanh.

Because saturating nonlinearities are upper-bounded, gradients are less susceptible to explosion.

Normalization in RNNs

Why not just normalize the whole output of an RNN layer? A couple subtle reasons why not:

13

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa15/slides/lecture14-KalmanFiltering.pdf

-0-5

Figure 5: Sigmoid (blue), tanh (red), “ReLU” (green)

e Outputs at a timestep depends on future inputs - could be an issue at inference time

e Could we layer norm the entire hidden state at each timestep? Or perhaps a batch norm?

e Batch norm is possible and done occasionally, but is hard to reason about as sequences are variable
length

Intuition: The layer-norm of single hidden state is like forcing all h; to lie on a sphere (or with
learned p, o, an ellipsoid)

Beam Search

In top-k beam search, at each time step ¢, the algorithm maintains a set of k partial sequences (called beams
or hypotheses) with the highest probabilities. At each time step, all possible extensions of the k “beams” are
calculated, and only the top k are kept.

The top-k beam search algorithm can be summarized as follows:

1. Initialize the set of beams with an empty sequence, i.e., By = {()}.
2. For each time step t =1,2,...,T"

a. For each beam b € B;_1:

b. Compute the conditional probabilities P(y;|b,) for all possible tokens y;.

ii. Extend the beam b by appending each token y; and calculate the probability of the extended

sequence using the conditional probabilities.

b. Select the top k extended sequences with the highest probabilities and set B; to these sequences.

3. Return the sequence in By with the highest probability.

Top-k beam search strikes a balance between exploration and exploitation. However, top-k beam search is
not guarantueed to find the optimal solution.

Attention

We learn keys, queries, values, and output sum of values weighted by the softmax of the inner products of
keys and queries

14

T; — ki,’l)i

Yi — qi
e. — <kjvqj>
J \/g
exp e;
Q= =""—
! > expe;

a; = E Oéj’l)j
J

The v/d is added to normalize the e; to variance 1, assuming random key, query vectors.
We have a traditional recurrent neural network-based encoder-decoder setup. How do we add attention?

We take the hidden state output for each decoder cell, learn a query from it, and then learn a key/value pair
for each encoder cell at each layer. Then concatenate the output from the attention with the output from the
hidden state, and input to the next layer.

output 1 —

N o HE
=] |

State o NN — =——» —m— I ——
i mm - Cmm |
- - .
| 1 | |
word 1 word 2 <END> of sentence <start>
RNN encoder RNN decoder

Figure 6: Diagram of attention. Source: Fa22 Scribe, Lecture 14

Definition. Self-attention is where the decoder queries itself.

Definition. Cross-attention is where the decoder queries the encoder.

Positional Encoding

The inputs to the attention are an unordered set. How can we add positional information? We use “circular
time” and express time as a sum of sinusoids. This is known as rotary encoding.

elwlt

ezwgt

eszt

Why can’t we use different w, perhaps depending on the length of the input sequence? This would introduce
issues with different sequences having different positional embedding schemes.

Self-Supervision / Autoencoders

“If you have a strong inductive bias, then you can get away with less data - if your inductive bias
is weak, then you need more data”

How can I train a network with unlabeled data?
“Self-supervised learning is unsupervised learning”

“Data Mining” is the beginning of this - we have data, but don’t know any patterns in it - how do we find
them?

Two classical approaches to unsupervised learning:

1. PCA, t-SNE - Dimensionality Reduction
2. k-Means - Clustering

Consider PCA. Justified by the Eckert-Young-Mirsky theorem:

Theorem. The best rank-k approximation to a matrix X is UX, V7. Formally,

U VT = argmin || X — X||r
X

Note that our objective function here is a kind of loss - is there therefore a way that we can formulate this
into a problem solveable by automatic differentiation and gradient descent?

However, the constraint is rather difficult to relax, meaning we can’t use pure gradient descent to solve the
problem.

Idea: compress = into a latent space, and then expand it back out to the original space again, taking the
squared reconstruction error as a loss.

16

	Weeks 1-2: the basics of machine learning, optimization, and regularization
	Week 3: Initialization and advanced optimization
	Week 4: Conv nets, batch norms, and dropout, oh my!
	Week 5: ResNets and ConvNeXT
	Week 6-8: Graph Neural Networks, RNNs, and attention
	Graph Neural Networks
	Aggregation Functions
	GNN Layers
	Graph Representation
	Normalization
	Loss in RNNs
	Pooling

	RNNs
	Nonlinearities
	Normalization in RNNs
	Beam Search

	Attention
	Positional Encoding
	Self-Supervision / Autoencoders

