
CS 182/282A: Designing/Visualizing and Understanding Deep Neural Networks

Lecture 18: Transformer Review, Fine-tuning, Embeddings
3 April 2023

Lecturer: Professor Anant Sahai Scribe: Zeqing Jin, Buyi Zhang

In this lecture, RNN, attention, and transformer topics covered in the previous lectures
were reviewed. New topics including fine-tuning and embeddings were discussed.

1 Transformer from the RNN-based encoder/decoder
A typical RNN-based encoder and decoder architecture is shown in Fig.1. The RNN blocks
are stacks of RNNs, which are weight shared across time. However, in the current structure,
the state has to carry a lot of information which may not able to focus on important pieces.

Figure 1: RNN-based encoder and decoder architecture

Therefore, the attention mechanism is introduced in the following steps:
Step 1: Use Attention (Cross-Attention) to give the decoder access to the relevant local

context in input.
Step 2: Use Attention (Self-Attention) to give the decoder causal access to output so

far.
There is a natural intellectual question that comes up: What now remains is the role of

the state in the decoder as we have a way to get access content in the encoder and decoder

1



so far. Why do we need the state at all? The answer to this question leads to the paper
Attention Is All You Need (https://tinyurl.com/ykc86uwf).

Step 3: Remove RNNs from Decoder.
Step 4: Introduce Attention (Self-Attention) in Encoder (Conceptual Step: Keep it

causal like Step 2 above). This allows RNNs to be removed.
Therefore, RNN blocks become Transformer blocks with different types of structures

shown in Fig. 2. With all the parts, attention, residual connection and MLP, different kinds
of interconnections are possible and lead to different structures.

Figure 2: Transformer Blocks and different structures. Bounding box with red dashed line
indicates a zoom-in view of the transformer block, which includes multi-head attention,
multilayer perceptron (MLP), and residual connection. The sub-figures (A, B, C, D) show
examples of the structure constructed by parts in the red bounding box.

In Fig. 2, structures A, C, and D are feasible structures, where structure A is a serial
interconnection of multi-head attention block and MLP block, and structure D works like
a parallel connection. Structure B is problematic and undesired owing to two reasons: (1)

2



structure A has two residual connections, where two blocks can learn separately, while struc-
ture B only has one residual connection, possibly jumping both blocks and learning nothing.
(2) The raw information of Xt is missing after the attention block (the information could be
a lot of information in the past without Xt) when fed into the MLP block in structure B.
Structure D will have similar effect with structure A since the attention in this layer will have
serial connections with the MLP next layer. But structure D is easier to be implemented
and convenient in large transformer models.

Step 5: Remove causality from encoder, which is an intrinsic implementation constraint
of RNN. It means instead of thinking of ki and vi pairs as only coming from the past, allow
self-attention to see them even from later on in the sequence (use non-causal Self-Attention).

Aside note: Normalizations can be added after the ResNet connection. Besides, normal-
ization can also be added when generating queries and keys in one recent paper (https:
//tinyurl.com/yeyu7d59).

Model training: The next question is how to train this model. For example, the causal
access in Step 2. A naive way is sequentially going through all the decoder RNN blocks
(Epoch 1, all the information in the encoder and the first block in the decoder; Epoch 2,
all the information in the encoder and the first two blocks in the decoder; etc). However,
under this method, all gradients and information are held in the memory of the GPU, which
is not ideal and efficient for the utilization of the processors. Therefore, we need parallelism
processing during the training process using causal masking. One way to realize causal
masking is adding minus infinity to the undesired terms as these terms will be zeroed out
after the softmax operation σ(x)i = exi/

∑n
i=1 e

xi .

2 Fine-tuning and Embedding

2.1 Fine-tuning

Before we talk about the applications of transformer architectures like BERT (Bidirectional
Encoder Representations from Transformers, encoder by itself) and GPT (Generative pre-
trained transformers, decoder by itself), one issue of the Transformer and its training is
that the transformer architectures are very hungry for training data, as they have a much
weaker inductive bias. One way to solve the data shortage is to take advantage of unlabeled
data like self-supervision. Another way is amortization across tasks. Many tasks are using
the same kind of data, particularly in the field of language processing. So in practice, the
transformer is pre-trained on some amalgam of tasks and possibly self-supervision. Then do
the adjustment (fine-tuning) for the task we specifically care about.

The basic kind of fine-tuning or adapting a neural network to another task is introduced
here. It is called the "Adding a new head" approach, illustrated in Fig. 3A.

1) Decapitate or remove the old head.
2) Add a new head with random initialization.
3) Train new head on task-specific data, while freezing the rest of the net.

3



The outputs of the neural network which are before the last linear layer to do classifica-
tion or regression tasks are interpreted as the learned features or embeddings of the input.
For example, historically, people decapitated the neural network trained from classification
tasks with the ImageNet dataset and trained on medical image classification with limited
labeled medical images. As a result, the performance is superior compared to training a new
network from the scratch only on the task-specific data. One comment is that you can choose
anywhere along the neural network as the end of the embedding and remove the following
structure as the old head.

Figure 3: Fine tunning, GPT style Embedding and BERT style Embedding

2.2 Embeddings

Then the next section is about how we can learn an embedding for language models. There
are two kind of approaches: GPT style and BERT style.

4



GPT style is the self-supervise or auto-complete by next word/token prediction like the
system-id style. Before talking about the GPT style, we introduce the concept of tokens. We
would like to have the inputs as a sequence like Y1, Y2, Y3, Y4, ... (Yi ∈ Rd). For language
problems, we need to get vectors from the text i.e. collections of the characters and this
is called the problem of tokenization and token embedding. The characters with variable
length are turned into a vector with fixed length. This is done by parsing the input string
into segments of tokens and followed by a look-up table that could be tuned/learned. The
details of tokenization is not included here but they are related to Huffman coding. The
tokenization is done at both input and output sides.

The GPT style to find embeddings is basically self-supervised by the next token prediction
as shown in Fig. 3B. The deep neural network starts with "start" input and outputs with
a loss (cross-entropy) between the first prediction and Y1. Next, the network has Y1 as the
input and tries to predict the next token Y2. This follows the same method in system-id
problem. One benefit is that all the text could be used as the training data to do the next
token prediction. The underlying lower dimensional structure or the embedding of language
is presumably learned after training. The attributes of language are distilled from the auto-
complete (next token prediction). One comment is that way more features than the training
data may be obtained after this but that should be okay in our context. We may assume
the regularization works.

Next, the BERT style is briefly introduced here as shown in Fig. 3C. Based on the encoder
architecture, BERT style does the data augmentation, such as the noisy and masked auto-
encoding we have learned. Some fractions of the input (5-15%) are masked and the task is to
reconstruct the embedding. For example, The input like X5 could be replaced with the mask
which is a real vector. The BERT style embedding was a huge language model development
when it first came out.

5


