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EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai Discussion 10

1. Tranformers and Pretraining
Tranformer Architecture is illustrated in the schematic below.

Figure 1: Overview of Transformer architecture

(a) Why do we need positional encoding? Describe a situation where word order information is
necessary for the task performed.
Solution: Position encoding is used to ensure that word position is known. Because attention is
applied symmetrically to all input vectors from the layer below, there is no way for the network to
know which positions were filtered through to the output of the attention block.
Position encoding also allows the network to compare words (nearby position encodings have high
inner product) and find nearby words. It is necessary in language translation tasks, where the order of
the words affects the meaning. For example, "the man chased the dog" and "the dog chased the man"
have very different meanings.

(b) When using an absolute positional encoding (e.g. sinusoids at different frequencies like hands of a
clock), we can either add it to the input embedding or concatenate it. That is, if xi is our word
embedding and pi is our position embedding, we can either use z = xi + pi or z = [xi, pi] Consider
a simple example where the query and key for the attention layer are both simply q = k = z. If we
compute a dot-product of a query with another key in the attention layer, what would be the
result in either case? Discuss the implications of this.
Solution:
Let x1, p1 be the word embedding and position embedding of word 1, and x2, p2 for word 2.
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If we add the embeddings to get our input, our dot-product is

(x1 + p1) · (x2 + p2) = x1 · x2 + x1 · p2 + p1 · x2 + p1 · p2

If we concatenate our embeddings to get the inputs, our dot-product is

[x1, p1] · [x2, p2] = x1 · x2 + p1 · p2

Discuss - with concatenation you avoid having the cross-terms, and thus are only comparing words
to words and positions to positions. This will combine to determine what we pay attention to. With
addition you also have the cross-terms, but they are typically small, at least at initialization (either
the x1 · x2 or p1 · p2 term typically would dominate and so it doesn’t matter too much) since in
high-dimensional spaces, vectors tend to be orthogonal. If anything, at initialization, the position
embeddings would have nontrivial dot-products since they are structured in such a way that nearby
positions are not orthogonal.

(c) It turns out we can extend the self-attention mechanics to have relative positions matter without cross
terms and without having to explicitly concatenate (and thereby increase the length of) two kinds of
embeddings.

i. Relative position embedding explicitly adds a learnable set of biases πi−j to the dot-product scores
before the softmax operation. For what πi,j would we get the same behavior from attention as
concatenating the position embeddings q(pos)

i , k(pos)
j to both the query qi and the keys kj?

Solution: First note that both qi and kj are word embeddings (at any arbitrary layer). To have
each bias vector πi,j match the results of concatenating position embedding, as you’ve seen in the
previous part, we want qikj + πi,j = qikj + q

(pos)
i k

(pos)
j .

Thus πi,j = q
(pos)
i k

(pos)
j . A self-attention layer will have multiple of these bias terms to represent

relative positions between multiple time steps.

If we complete the full query-key-value mechanics with the learnt πi,j biases, we get:

αij = exp
{
qikj + πi,j

}
= eqikj · eπi,j (pre-softmax coefficient)

aij =

N∑
j=1

(eπi,j · eqikj ) · vi

where eπi,j can be viewed as "relative position aware" scaling factor in self-attention!

ii. If T is the maximum context-length and we have m attention heads, how many extra parameters
have to be learned if we insist that these learned (per-head) attention biases πi,j = πi−j must
only depend on relative position?
Solution:
This is essentially the idea of Shaw et al (2018). The modified self-attention will now contain
extra parameters πi,j for every pair of query i and key j, representing their pairwise relative po-
sition info. Since we explicitly set πi,j = πi−j meaning that π1,4 = π2,5 as they both model the
relative position between two tokens that are +3 timesteps away, what previously was T position
embeddings included at input, is now (2 ·(T −1)+1) ·m embeddings at each self-attention layer.
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This design works well in applications such as machine translation, even without the absolute
position embedding. In practice, the number of parameter πi,j is clipped to only model relative
position information of tokens maximally k-token away from each other (i.e. there are 2k + 1
biases to learn). Check the linked paper if you want to learn more!

(d) What is the advantage of multi-headed attention? Give some examples of structures that can be
found using multi-headed attention.

Solution: Multi-Head attention allows for a single attention module to attend to multiple parts of an
input sequence. This is useful when the output is dependent on multiple inputs (such as in the case of
the tense of a verb in translation). Attention heads find features like start of sentence and paragraph,
subject/object relations, pronouns, etc.

(e) Let’s say we’re using argmax attention, which uses argmax rather than softmax, like we saw on the
midterm. What is the size of the receptive field of a node at level n...
If we have only a single head?
If we have two heads?
If we have k heads?
Solution: With only a single head, we only have attention with one other time step (ie. the key
vector), so with the residual connection in the transformer block, a branching factor of 2 at each level.
Hence total size is 2n.
With two heads, each hidden state can pay attention to itself and two other hidden states, so we have a
branching factor of 3. Total size of receptive field is 3n.
Similarly, with k heads, size of the receptive field is (k + 1)n

(f) For input sequences of length M and output sequences of length N , what are the complexities of
(1) Encoder Self-Attention (2) Cross Attention (3) Decoder Self-Attention. Let k be the hidden
dimension of the network.

Solution: (1) O(M2k) (2) O(MNk) (3) O(N2k)

(g) True or False: With transformer masked autoencoders, masking out a token typically involves
replacing both the token value and the positional encoding at an index with a special “mask"
token.
Solution: False. Using “mask” tokens is common, but we do not mask out the positional encoding (if
we did, the model would not know where the masked token belongs in the sequence. The autoencoder
would produce identical representations for all masked tokens.

(h) A group of CS 182 students are creating a language model, and one student suggests that they use
random text from novels for pre-training. Another student says that this is just arbitrary text isn’t
useful because there aren’t any labels. Who’s right and why?
Solution: Pretraining for large language models is typically self-supervised. This means that the
"labels" are inferred automatically from the inputs. An example of such a scheme could be to predict
the next word or fill in some masked words.

(i) Would an encoder model or a encoder-decoder model be better suited for the following tasks?
Summarizing text in an article
Classify written restaurant reviews by their sentiment
Identifying useful pages when retrieving web search results
Translating one language to another

Solution:
Summarizing text in an article: Seq-to-seq
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Classify written restaurant reviews by their sentiment: Encoder Model
Identifying useful pages when retrieving web search results: Encoder Model
Translating one language to another: Seq-to-Seq
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