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EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai Discussion 13

1. Entropy, Cross-Entropy, Kullback - Leibler (KL)-divergence
Entropy is a measure of expected surprise. For a given discrete Random variable Y , we know that from
Information Theory that a measure the surprise of observing that Y takes the value k by computing:

log
1

p(Y = k)
= − log[p(Y = k)]

As given:

• if p(Y = k)→ 0, the surprise of observing k approaches∞
• if p(Y = k)→ 1, the surprise of observing k approaches 0

The Entropy of the distribution of Y is then the expected surprise given by:

H(Y ) = EY

[
− log

(
p(Y = k)

)]
= −Σk

[
p(Y = k) log[p(Y = k)]

]
On the other hand, Cross-entropy is a measure building upon entropy, generally calculating the difference
between two probability distributions p and q. it is given by:

H(p, q) = Ep(x)

[ 1

log
(
q(x)

)]
= Σx

[
p(x) log[

1

q(x)
]
]

Relative Entropy also known as KL Divergence measures how much one distribution diverges from another.
For two discrete probability distributions, p and q, it is defined as:

DKL(p||q) = Σx

[
p(x) log[

p(x)

q(x)
]
]

(a) Let’s define the following probability distributions given by:

p(x) =

{
1 with probability 0.5
−1 with probability 0.5

q(x) =

{
1 with probability 0.1
−1 with probability 0.9
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Show that KL-divergence is not symmetric and hence does not satisfy some intuitive attributes of
distances.

(b) Re-write DKL(p||q) in term of the Entropy H(p) and the cross entropy H(p, q).

2. Reparameterization Trick
Formally, a latent variable model p is a probability distribution over observed variables x and latent variables
z (variables that are not directly observed but inferred), pθ(x, z). Because we know z is unobserved, using
learning methods learned in class (like supervised learning methods) is unsuitable. Indeed, our learning
problem of maximizing the log-likelihood of the data turns from:

θ ← argmax
θ

1

N
ΣN
i=1log[pθ(xi)]

to:

θ ← argmax
θ

1

N
ΣN
i=1log[

∫
pθ(xi | z)p(z)dz]

where p(x) has become
∫
pθ(xi | z)p(z)dz.

(a) State whether or not we could directly maximize the likelihood above and why?

(b) Instead of directly optimizing the likelihood of p(x), we define the proxy likelihood as:

L(xi, θ, ϕ) = Ez∼qϕ(z|xi)

[
log[pθ(xi | z)]

]
−DKL

[
qϕ(z | xi)||p(z)

]
This proxy term is a lower bound of the original likelihood. In order to optimize this variational lower
bound, which distribution do we sample from?

(c) How do we take gradients through samples? To do we, we need to show how sampling can be done
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as a deterministic and continuous function of the model parameters θ and the independent source of
randomness (ie. the prior). Such an explicit representation of sampling is called reparameterization.
Consider the case where the data x is sampled from a normal distribution with its mean parameterized
by parameters θ and variance of 1, with our objective being a quadratic function of x:

min
θ

Eq[x
2]

Write x as a function of ϵ, a vector sampled from a standard Normal N (0, 1), and compute the
gradient of the expectation term above:

(d) Now consider a more generic case where we would like to optimize

min
θ

Ev[L(x)]

where x is sampled from a learnt latent function fθ(u, v) that is dependent on u the input data and v
the independent randomness. Show that the gradient ∇θEv[L(x)] can be estimated by samples of
∇θfθ(u, v). (Hint: the process of this question is very similar to the previous part.)

3. Latent Variable Models
(a) Describe step-by-step what happens during a forward pass in VAE training. Use the notation

from the variational lower bound term (the "proxy likelihood") in the previous question, namely
qϕ(z | x), pθ(z | xi), DKL(·) ... etc.

(b) Describe what the encoder and decoder of the VAE are respectively doing to capture and encode
this information into a latent representation of space z. Is the latent space dimension smaller that
the input space? How is the information bottleneck created in VAE as opposed to Autoencoder.

(c) Once the VAE is trained, how do we use it to generate a new fresh sample from the learned ap-
proximation of the data-generating distribution?

Discussion 13, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 3



Discussion 13 @ 2023-04-25 07:23:26Z

(d) In the previous question we have used a proxy likelihood:

L(xi, θ, ϕ) = Ez∼qϕ(z|xi)

[
log[pθ(xi | z)]

]
−DKL

[
qϕ(z | xi)||p(z)

]
Please show that L(xi, θ, ϕ) is always a lower bound to the true log likelihood for xi.

Hint: You can show that something is a lower bound by showing that adding a non-negative term to it
gives the original quantity — remember, the KL divergence is always non-negative.
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