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EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai DiSCUSSiOD 13

Entropy, Cross—Entropy, Kullback - Leibler (KL)—divergence

Entropy is a measure of expected surprise. For a given discrete Random variable Y, we know that from
Information Theory that a measure the surprise of observing that Y takes the value k by computing:

1
log m = —loglp(Y = k)]

As given:

* if p(Y = k) — 0, the surprise of observing k approaches co
» if p(Y = k) — 1, the surprise of observing k approaches 0

The Entropy of the distribution of Y is then the expected surprise given by:
H(Y)=Ey [ —log(p(Y = k))] = -5 [p(Y = k) log[p(Y = k)]

On the other hand, Cross-entropy is a measure building upon entropy, generally calculating the difference
between two probability distributions p and g. it is given by:

H(p,q) = Epa) [#}

Relative Entropy also known as KL. Divergence measures how much one distribution diverges from another.
For two discrete probability distributions, p and q, it is defined as:

Dicsplo) = £ pla) g4

(a) Let’s define the following probability distributions given by:

() = 1 with probability 0.5
PR)=9N —1  with probability 0.5

() = 1 with probability 0.1
@) =193 —1  with probability 0.9

s
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Show that KL-divergence is not symmetric and hence does not satisfy some intuitive attributes of
distances.

Solution:
To show this, we need to show that:

Drr(pllg) # Dxr(qllp)

0.5 0.5
DKLp\|q)—O5><log[Ol]+05><l g[og]

0.1 0.9
DKdmm)—lek%%5k+09xbd05

hence Dk 1.(pllq) # Dir(qllp)

(b) Re-write D, (p||q) in term of the Entropy H (p) and the cross entropy H (p, q).

Solution:
Drcs(plle) = % [pl@) log[ﬁfgﬂ
- [ log (p(x)) — los(a(x)]
= [log(p(m) ,p(x)[log (x))}

1

J-
= [log(q(ac))} {log(p(l‘))}
|- E

{log {log

:Hmm—H@

)

2. Reparameterization Trick

Formally, a latent variable model p is a probability distribution over observed variables x and latent variables
z (variables that are not directly observed but inferred), py(z, z). Because we know z is unobserved, using
learning methods learned in class (like supervised learning methods) is unsuitable. Indeed, our learning
problem of maximizing the log-likelihood of the data turns from:

1
0 < arg max Nﬁﬁillog[pg(xi)]
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to:

1
0« argmpx 1 log] [ (o | 2)p(2)d

where p(x) has become [ py(z; | 2)p(z)dz.

(a)

(b)

(©

State whether or not we could directly maximize the likelihood above and why?
Solution: No, we can’t because, in the integral, it is intractable to compute pg(z | z) for every z. On

_ po(z]2)pe(2)

the other hand, if we look at the posterior density given by py(z | ) = o)+ We can see that

pe(x) is also intractable.

Instead of directly optimizing the likelihood of p(x), we define the proxy likelihood as:

L(1,6,6) = Bergy cjey | lo8lpo(a: | 2)]| = Dici|as(= | 20| p(2)

This proxy term is a lower bound of the original likelihood. In order to optimize this variational lower
bound, which distribution do we sample from?

Solution: We sample from g4 (z | ;)

How do we take gradients through samples? To do we, we need to show how sampling can be done
as a deterministic and continuous function of the model parameters 6 and the independent source of
randomness (ie. the prior). Such an explicit representation of sampling is called reparameterization.
Consider the case where the data = is sampled from a normal distribution with its mean parameterized
by parameters 6 and variance of 1, with our objective being a quadratic function of x:

n%in Eqy[z”]

Write 2 as a function of ¢, a vector sampled from a standard Normal N (0, 1), and compute the
gradient of the expectation term above:

Solution: We can first make the stochastic element in q independent of #, and rewrite x as:

r=0+¢ee~N(0,1)

Eqla®] = E[(0 + €)?]
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Hence we can write the derivative of E,[2?] as:

VoEy[z%] = VoE][(0 + ¢)?]
= E.[2(0 + ¢)]

(d) Now consider a more generic case where we would like to optimize

Inain E,[L(x)]

where x is sampled from a learnt latent function fy(u,v) that is dependent on w the input data and v
the independent randomness. Show that the gradient Vy E,[L(x)] can be estimated by samples of
Vo fo(u,v). (Hint: the process of this question is very similar to the previous part.)

Solution: The gradient of expectation can be expressed by the expectation of gradients, which can
be sampled from an independent randomness that needs not to be a Gaussion or any fixed prior.

VoE,[L(x)] = Ey[VoL(fo(u,v))]

~ S Vel (folu,v)
i=1

Hence this optimization problem can be handled simply by the samples from v.

3. Latent Variable Models

(a) Describe step-by-step what happens during a forward pass in VAE training. Use the notation
from the variational lower bound term (the "proxy likelihood") in the previous question, namely
9s(2 | x),po(2 | i), Drr(-) ... etc.
Solution: For a forward pass, through which we run our minibatch of input data,
i. We pass this through our Encoder network (g4(z | «)). Note this is specifically optimized through

the second term in our lower bound loss function (ELBO) i. e D r.(q4(z | 2;)||pe(2 | x;)) whose
only goal is to make an approximation of our posterior distribution.

ii. We then sample 2 from z|z ~ N (i, X.|;). These are the samples of latent factors that we can
infer from x

iii. We pass the obtained z through our Decoder network (pg(z | z)). We then sample & from x|z ~
N (fg|z; 2g)-)- Note that is handled specifically by the first term is our loss i. € E. g, ([;) [log po(x; |

z)| whose only goal is to maximize the likelihood of the original input being reconstructed.
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iv. Compute the loss, which is differentiable, then backpropagate and update parameters.

(b) Describe what the encoder and decoder of the VAE are respectively doing to capture and encode
this information into a latent representation of space z. Is the latent space dimension smaller that
the input space? How is the information bottleneck created in VAE as opposed to Autoencoder.

Solution:

i. Encoder - Encoder maps a high-dimensional input x (like the pixels of an image) and then (most
often) outputs the parameters of a Gaussian distribution that specify the hidden variable z. In other
words, they output 1|, and X ,. We will implement this as a deep neural network, parameterized
by ¢, which computes the probability ¢,4(z|z). We could then sample from this distribution to get
noisy values of the representation z.

ii. Decoder - Decoder maps the latent representation back to a high dimensional reconstruction,
denoted as 2, and outputs the parameters to the probability distribution of the data. We will
implement this as another neural network, parametrized by 6, which computes the probability
po(z|z). In the MNIST dataset example, if we represent each pixel as a 0 (black) or 1 (white), the
probability distribution of a single pixel can be then represented using a Bernoulli distribution.
Indeed, the decoder gets as input the latent representation of a digit z and outputs 784 Bernoulli
parameters, one for each of the 784 pixels in the image.

(c) Once the VAE is trained, how do we use it to generate a new fresh sample from the learned ap-
proximation of the data-generating distribution?

Solution: We can now use only the Decoder network (pg(z | 2)). Here, instead of sampling z from
the posterior that we had during training, we sample from our true generative process which is the prior
that we had specified (z ~ N(0, I)) and we proceed to use the network to sample # from there.

(d) In the previous question we have used a proxy likelihood:

L(xi,0,0) = E.qy(z|a;) | log[po(zi | 2)]} — Dk1, [%(Z | zi)||p(2)
Please show that £(x;, 0, ¢) is always a lower bound to the true log likelihood for z;.

Hint: You can show that something is a lower bound by showing that adding a non-negative term to it
gives the original quantity — remember, the KL divergence is always non-negative.
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Solution:

108 D9(25) = Barg efa) | o8 Po i)

g P2 | 2)P0(2)
omoqy (2]a;) | 10—
w18 Ty

=F

[ Po\x; | 2)pg(2) gpl 2 | X5
B[ 22 L) 06 )
L po(z | @) gs(z | i)
r qp(% | i) q(2 | i)
= Ez~q¢(z|zi) _logPG(J:i ‘ Z)} - Ez~q¢(z|:pi) |:10g T(Z)] + E'zwq¢(z|mZ 10g ( | )

= Begyeten | 1o Po(es | 2)] — Dica(ag(z | 20llpo(2)) + Dice (o= | ) lpofz | 1)
= L(z4,0,0) + Drr(qg(2 | zi)||po(z | 7))

Because D1, (qg(z | 23)||po(z | ;)) > 0, and is not tractable due to py(z | z;) we can conclude that:
log po(wi) > L(2i,0,0) = E.q,(zle:) [logpa(wi ! 2)} — Drr(qe(z | z:)|lpe(2))
Alternatively we could use Jensen’s Inequality, which states, log E[X] > E[log X] to show that:

S loglpg(z:)] > S/ Eyaen log (pa(2)) — log(pg(z | 1)) + log(pe(zi | 2))]

That is:
We first write out the log-likelihood objective of a discrete latent variable model.

1 1
argmax -3 log[py (1)) = arg max 3L, log[-py(x: | 2)po(2)]

N
then,
S loglp(wi)] = S, (3. loglpo(=)pu(ai | 2)))
- = (o 24 (et | )
= EZ]L(Z log Eq¢(z|mi)[mpe(2)pe($i | Z)])
S 1og[pe(i)] > S Ey e log (pe(2)) —log(pe(z | 1)) + log(pe(i | 2))]
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