1. Entropy, Cross-Entropy, Kullback - Leibler (KL)-divergence

Entropy is a measure of expected surprise. For a given discrete Random variable Y, we know that from Information Theory that a measure the surprise of observing that Y takes the value k by computing:

$$\log \frac{1}{p(Y = k)} = - \log[p(Y = k)]$$

As given:
- if $p(Y = k) \to 0$, the surprise of observing k approaches ∞
- if $p(Y = k) \to 1$, the surprise of observing k approaches 0

The Entropy of the distribution of Y is then the expected surprise given by:

$$H(Y) = E_Y \left[- \log(p(Y = k)) \right] = -\sum_k p(Y = k) \log[p(Y = k)]$$

On the other hand, Cross-entropy is a measure building upon entropy, generally calculating the difference between two probability distributions p and q. It is given by:

$$H(p, q) = E_{p(x)} \left[\frac{1}{\log(q(x))} \right] = \sum_x p(x) \log \left[\frac{1}{q(x)} \right]$$

Relative Entropy also known as KL Divergence measures how much one distribution diverges from another. For two discrete probability distributions, p and q, it is defined as:

$$D_{KL}(p||q) = \sum_x p(x) \log \left[\frac{p(x)}{q(x)} \right]$$

(a) Let’s define the following probability distributions given by:

$$p(x) = \begin{cases} 1 & \text{with probability 0.5} \\ -1 & \text{with probability 0.5} \end{cases}$$

$$q(x) = \begin{cases} 1 & \text{with probability 0.1} \\ -1 & \text{with probability 0.9} \end{cases}$$
Show that KL-divergence is not symmetric and hence does not satisfy some intuitive attributes of distances.

Solution:
To show this, we need to show that:

\[
D_{KL}(p||q) \neq D_{KL}(q||p)
\]

\[
D_{KL}(p||q) = 0.5 \times \log\left(\frac{0.5}{0.1}\right) + 0.5 \times \log\left(\frac{0.5}{0.9}\right)
\]

\[
D_{KL}(q||p) = 0.1 \times \log\left(\frac{0.1}{0.5}\right) + 0.9 \times \log\left(\frac{0.9}{0.5}\right)
\]

hence \(D_{KL}(p||q) \neq D_{KL}(q||p)\)

(b) Re-write \(D_{KL}(p||q)\) in term of the Entropy \(H(p)\) and the cross entropy \(H(p, q)\).

Solution:

\[
D_{KL}(p||q) = \sum_x p(x) \log\left(\frac{p(x)}{q(x)}\right)
\]

\[
= \sum_x p(x) \left[\log(p(x)) - \log(q(x)) \right]
\]

\[
= E_{p(x)} \left[\log(p(x)) \right] - E_{p(x)} \left[\log(q(x)) \right]
\]

\[
= -E_{p(x)} \left[\log(q(x)) \right] + E_{p(x)} \left[\log(p(x)) \right]
\]

\[
= E_{p(x)} \left[\frac{1}{\log(q(x))} \right] - E_{p(x)} \left[\frac{1}{\log(p(x))} \right]
\]

\[
= H(p, q) - H(p)
\]

2. **Reparameterization Trick**

Formally, a latent variable model \(p\) is a probability distribution over observed variables \(x\) and latent variables \(z\) (variables that are not directly observed but inferred), \(p_{\theta}(x, z)\). Because we know \(z\) is unobserved, using learning methods learned in class (like supervised learning methods) is unsuitable. Indeed, our learning problem of maximizing the log-likelihood of the data turns from:

\[
\theta \leftarrow \arg\max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log[p_{\theta}(x_i)]
\]
to:

\[
\theta \leftarrow \arg \max_{\theta} \frac{1}{N} \sum_{i=1}^{N} \log \left[\int p_{\theta}(x_i \mid z) p(z) dz \right]
\]

where \(p(x) \) has become \(\int p_{\theta}(x_i \mid z) p(z) dz \).

(a) State whether or not we could directly maximize the likelihood above and why?

Solution: No, we can’t because, in the integral, it is intractable to compute \(p_{\theta}(x \mid z) \) for every \(z \). On the other hand, if we look at the posterior density given by \(p_{\theta}(z \mid x) = \frac{p_{\theta}(x \mid z) p_{\theta}(z)}{p_{\theta}(x)} \), we can see that \(p_{\theta}(x) \) is also intractable.

(b) Instead of directly optimizing the likelihood of \(p(x) \), we define the proxy likelihood as:

\[
\mathcal{L}(x_i, \theta, \phi) = E_{z \sim q_{\phi}(z \mid x_i)} \left[\log[p_{\theta}(x_i \mid z)] \right] - D_{KL} \left[q_{\phi}(z \mid x_i) \mid\mid p(z) \right]
\]

This proxy term is a lower bound of the original likelihood. In order to optimize this variational lower bound, which distribution do we sample from?

Solution: We sample from \(q_{\phi}(z \mid x_i) \)

(c) How do we take gradients through samples? To do we, we need to show how sampling can be done as a deterministic and continuous function of the model parameters \(\theta \) and the independent source of randomness (ie. the prior). Such an explicit representation of sampling is called reparameterization. Consider the case where the data \(x \) is sampled from a normal distribution with its mean parameterized by parameters \(\theta \) and variance of 1, with our objective being a quadratic function of \(x \):

\[
\min_{\theta} E_q[x^2]
\]

Write \(x \) as a function of \(\epsilon \), a vector sampled from a standard Normal \(\mathcal{N}(0, 1) \), and compute the gradient of the expectation term above:

Solution: We can first make the stochastic element in \(q \) independent of \(\theta \), and rewrite \(x \) as:

\[
x = \theta + \epsilon, \epsilon \sim \mathcal{N}(0, 1)
\]

\[
E_q[x^2] = E_\epsilon[(\theta + \epsilon)^2]
\]
Hence we can write the derivative of $E_q[x^2]$ as:

$$\nabla_\theta E_q[x^2] = \nabla_\theta E_\epsilon[(\theta + \epsilon)^2] = E_\epsilon[2(\theta + \epsilon)]$$

(d) Now consider a more generic case where we would like to optimize

$$\min_\theta E_v[L(x)]$$

where x is sampled from a learnt latent function $f_\theta(u, v)$ that is dependent on u the input data and v the independent randomness. **Show that the gradient $\nabla_\theta E_v[L(x)]$ can be estimated by samples of $\nabla_\theta f_\theta(u, v)$.** *(Hint: the process of this question is very similar to the previous part.)*

Solution: The gradient of expectation can be expressed by the expectation of gradients, which can be sampled from an independent randomness that needs not to be a Gaussian or any fixed prior.

$$\nabla_\theta E_v[L(x)] = E_v[\nabla_\theta L(f_\theta(u, v))] \approx \frac{1}{m} \sum_{i=1}^{m} \nabla_\theta L(f_\theta(u, v))$$

Hence this optimization problem can be handled simply by the samples from v.

3. Latent Variable Models

(a) **Describe step-by-step what happens during a forward pass in VAE training.** Use the notation from the variational lower bound term (the "proxy likelihood") in the previous question, namely $q_\phi(z \mid x), p_\theta(z \mid x_i), D_{KL}(\cdot) ...$ etc.

Solution: For a forward pass, through which we run our minibatch of input data,

i. We pass this through our Encoder network $(q_\phi(z \mid x))$. Note this is specifically optimized through the second term in our lower bound loss function (ELBO) i.e. $D_{KL}(q_\phi(z \mid x_i)||p_\theta(z \mid x_i))$ whose only goal is to make an approximation of our posterior distribution.

ii. We then sample z from $z \sim N(\mu_z|x, \Sigma_z|x)$. These are the samples of latent factors that we can infer from x

iii. We pass the obtained z through our Decoder network $(p_\theta(x \mid z))$. We then sample \hat{x} from $\hat{x} \sim N(\mu_x|z, \Sigma_x|z)$. Note that is handled specifically by the first term is our loss i.e. $E_{z \sim q_\phi(z|xi)}[\log p_\theta(x_i | z)]$ whose only goal is to maximize the likelihood of the original input being reconstructed.
iv. Compute the loss, which is differentiable, then backpropagate and update parameters.

(b) Describe what the encoder and decoder of the VAE are respectively doing to capture and encode this information into a latent representation of space z. Is the latent space dimension smaller than the input space? How is the information bottleneck created in VAE as opposed to Autoencoder.

Solution:

i. Encoder - Encoder maps a high-dimensional input x (like the pixels of an image) and then (most often) outputs the parameters of a Gaussian distribution that specify the hidden variable z. In other words, they output $\mu_{z|x}$ and $\Sigma_{z|x}$. We will implement this as a deep neural network, parameterized by ϕ, which computes the probability $q_{\phi}(z|x)$. We could then sample from this distribution to get noisy values of the representation z.

ii. Decoder - Decoder maps the latent representation back to a high dimensional reconstruction, denoted as \hat{x}, and outputs the parameters to the probability distribution of the data. We will implement this as another neural network, parameterized by θ, which computes the probability $p_{\theta}(x|z)$. In the MNIST dataset example, if we represent each pixel as a 0 (black) or 1 (white), the probability distribution of a single pixel can be then represented using a Bernoulli distribution. Indeed, the decoder gets as input the latent representation of a digit z and outputs 784 Bernoulli parameters, one for each of the 784 pixels in the image.

(c) Once the VAE is trained, how do we use it to generate a new fresh sample from the learned approximation of the data-generating distribution?

Solution: We can now use only the Decoder network ($p_{\theta}(x|z)$). Here, instead of sampling z from the posterior that we had during training, we sample from our true generative process which is the prior that we had specified ($z \sim N(0, I)$) and we proceed to use the network to sample \hat{x} from there.

(d) In the previous question we have used a proxy likelihood:

$$L(x_i, \theta, \phi) = E_{z \sim q_{\phi}(z|x_i)}\left[\log[p_{\theta}(x_i \mid z)] \right] - D_{KL}\left[q_{\phi}(z \mid x_i) \mid \mid p(z)\right]$$

Please show that $L(x_i, \theta, \phi)$ is always a lower bound to the true log likelihood for x_i.

Hint: You can show that something is a lower bound by showing that adding a non-negative term to it gives the original quantity — remember, the KL divergence is always non-negative.
Solution:

\[
\log p_\theta(x_i) = E_{z \sim q_\phi(z|x_i)} \left[\log p_\theta(x_i) \right]
\]

\[
= E_{z \sim q_\phi(z|x_i)} \left[\log \frac{p_\theta(x_i | z) p_\theta(z)}{p_\theta(z | x_i)} \right]
\]

\[
= E_{z \sim q_\phi(z|x_i)} \left[\log p_\theta(x_i | z) - \log q_\phi(z | x_i) \right]
\]

\[
= E_{z \sim q_\phi(z|x_i)} \left[\log q_\phi(z | x_i) \right] + D_{KL}(q_\phi(z | x_i)||p_\theta(z | x_i))
\]

Because \(D_{KL}(q_\phi(z | x_i)||p_\theta(z | x_i)) \geq 0\), and is not tractable due to \(p_\theta(z | x_i)\) we can conclude that:

\[
\log p_\theta(x_i) \geq L(x_i, \theta, \phi) = E_{z \sim q_\phi(z|x_i)} \left[\log p_\theta(x_i | z) \right] - D_{KL}(q_\phi(z | x_i)||p_\theta(z))
\]

Alternatively we could use Jensen’s Inequality, which states, \(\log E[X] \geq E[\log X]\) to show that:

\[
\Sigma_{i=1}^{N} \log[p_\theta(x_i)] \geq \Sigma_{i=1}^{N} E_{q(z|x_i)}[\log(p_\theta(z)) - \log(p_\theta(z | x_i)) + \log(p_\theta(x_i | z))]
\]

That is:

We first write out the log-likelihood objective of a discrete latent variable model.

\[
\arg\max_{\theta} \frac{1}{N} \Sigma_{i=1}^{N} \log[p_\theta(x_i)] = \arg\max_{\theta} \frac{1}{N} \Sigma_{i=1}^{N} \log[p_\theta(x_i | z)p_\theta(z)]
\]

then,

\[
\Sigma_{i=1}^{N} \log[p_\theta(x_i)] = \Sigma_{i=1}^{N} \left(\Sigma_{z} \log[p_\theta(z)p_\theta(x_i | z)] \right)
\]

\[
= \sum_{i=1}^{N} \left(\Sigma_{z} \log \left[\frac{q_\phi(z | x_i)}{q_\phi(z | x_i)} p_\theta(z | x_i) \right] \right)
\]

\[
= \Sigma_{i=1}^{N} \left(\Sigma_{z} \log E_{q_\phi(z|x_i)} \left[\frac{1}{q_\phi(z | x_i)} p_\theta(z | x_i) \right] \right)
\]

\[
\Sigma_{i=1}^{N} \log[p_\theta(x_i)] \geq \Sigma_{i=1}^{N} E_{q(z|x_i)}[\log(p_\theta(z)) - \log(p_\theta(z | x_i)) + \log(p_\theta(x_i | z))]
\]

Contributors:

- Jerome Quenum.
- Anant Sahai.
- Kevin Li.
- Past CS282 Staff.