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EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai Review: Generative Models

1. Reparameterization Trick
Formally, a latent variable model p is a probability distribution over observed variables x and latent variables
z (variables that are not directly observed but inferred), pθ(x, z). Because we know z is unobserved, using
learning methods learned in class (like supervised learning methods) is unsuitable. Indeed, our learning
problem of maximizing the log-likelihood of the data turns from:

θ ← argmax
θ

1

N
ΣN
i=1log[pθ(xi)]

to:

θ ← argmax
θ

1

N
ΣN
i=1log[

∫
pθ(xi | z)p(z)dz]

where p(x) has become
∫
pθ(xi | z)p(z)dz.

(a) Instead of directly optimizing the likelihood of p(x), we define the proxy likelihood as:

L(xi, θ, ϕ) = Ez∼qϕ(z|xi)

[
log[pθ(xi | z)]

]
−DKL

[
qϕ(z | xi)||p(z)

]
This proxy term is a lower bound of the original likelihood. In order to optimize this variational lower
bound, which distribution do we sample from?
Solution: We sample from qϕ(z | xi)

(b) How do we take gradients through samples? To do we, we need to show how sampling can be done
as a deterministic and continuous function of the model parameters θ and the independent source of
randomness (ie. the prior). Such an explicit representation of sampling is called reparameterization.
Consider the case where the data x is sampled from a normal distribution with its mean parameterized
by parameters θ and variance of 1, with our objective being a quadratic function of x:

min
θ

Eq[x
2]
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Write x as a function of ϵ, a vector sampled from a standard Normal N (0, 1), and compute the
gradient of the expectation term above:
Solution: We can first make the stochastic element in q independent of θ, and rewrite x as:

x = θ + ϵ, ϵ ∼ N (0, 1)

Eq[x
2] = Eϵ[(θ + ϵ)2]

Hence we can write the derivative of Eq[x
2] as:

∇θEq[x
2] = ∇θEϵ[(θ + ϵ)2]

= Eϵ[2(θ + ϵ)]

2. Latent Variable Models
(a) Describe what the encoder and decoder of the VAE are respectively doing to capture and encode

this information into a latent representation of space z. Is the latent space dimension smaller that
the input space? How is the information bottleneck created in VAE as opposed to Autoencoder.
Solution:

i. Encoder - Encoder maps a high-dimensional input x (like the pixels of an image) and then (most
often) outputs the parameters of a Gaussian distribution that specify the hidden variable z. In other
words, they output µz|x and Σz|x. We will implement this as a deep neural network, parameterized
by ϕ, which computes the probability qϕ(z|x). We could then sample from this distribution to get
noisy values of the representation z.

ii. Decoder - Decoder maps the latent representation back to a high dimensional reconstruction,
denoted as x̂, and outputs the parameters to the probability distribution of the data. We will
implement this as another neural network, parametrized by θ, which computes the probability
pθ(x|z). In the MNIST dataset example, if we represent each pixel as a 0 (black) or 1 (white), the
probability distribution of a single pixel can be then represented using a Bernoulli distribution.
Indeed, the decoder gets as input the latent representation of a digit z and outputs 784 Bernoulli
parameters, one for each of the 784 pixels in the image.

(b) Once the VAE is trained, how do we use it to generate a new fresh sample from the learned ap-
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proximation of the data-generating distribution?
Solution: We can now use only the Decoder network (pθ(x | z)). Here, instead of sampling z from
the posterior that we had during training, we sample from our true generative process which is the prior
that we had specified (z ∼ N (0, I)) and we proceed to use the network to sample x̂ from there.

(c) In the previous question we have used a proxy likelihood:

L(xi, θ, ϕ) = Ez∼qϕ(z|xi)

[
log[pθ(xi | z)]

]
−DKL

[
qϕ(z | xi)||p(z)

]
Please show that L(xi, θ, ϕ) is always a lower bound to the true log likelihood for xi.

Solution:

log pθ(xi) = Ez∼qϕ(z|xi)

[
log pθ(xi)

]
= Ez∼qϕ(z|xi)

[
log

pθ(xi | z)pθ(z)
pθ(z | xi)

]
= Ez∼qϕ(z|xi)

[
log

pθ(xi | z)pθ(z)
pθ(z | xi)

qϕ(z | xi)
qϕ(z | xi)

]
= Ez∼qϕ(z|xi)

[
log pθ(xi | z)

]
− Ez∼qϕ(z|xi)

[
log

qϕ(z | xi)
pθ(z)

]
+ Ez∼qϕ(z|xi)

[
log

qϕ(z | xi)
pθ(z | xi)

]
= Ez∼qϕ(z|xi)

[
log pθ(xi | z)

]
−DKL(qϕ(z | xi)||pθ(z)) +DKL(qϕ(z | xi)||pθ(z | xi))

= L(xi, θ, ϕ) +DKL(qϕ(z | xi)||pθ(z | xi))

Because DKL(qϕ(z | xi)||pθ(z | xi)) ≥ 0, and is not tractable due to pθ(z | xi) we can conclude that:

log pθ(xi) ≥ L(xi, θ, ϕ) = Ez∼qϕ(z|xi)

[
log pθ(xi | z)

]
−DKL(qϕ(z | xi)||pθ(z))

Alternatively we could use Jensen’s Inequality, which states, logE[X] ≥ E[logX] to show that:

ΣN
i=1log[pθ(xi)] ≥ ΣN

i=1Eq(z|xi)[log
(
pθ(z)

)
− log

(
pq(z | xi)

)
+ log

(
pθ(xi | z)

)
]

That is:
We first write out the log-likelihood objective of a discrete latent variable model.

argmax
θ

1

N
ΣN
i=1log[pθ(xi)] = argmax

θ

1

N
ΣN
i=1log[Σzpθ(xi | z)pθ(z)]

then,

ΣN
i=1log[pθ(xi)] = ΣN

i=1

(
Σz log[pθ(z)pθ(xi | z)]

)
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= ΣN
i=1

(
Σz log[

qϕ(z | xi)
qϕ(z | xi)

pθ(z)pθ(xi | z)]
)

= ΣN
i=1

(
Σz logEqϕ(z|xi)[

1

qϕ(z | xi)
pθ(z)pθ(xi | z)]

)
ΣN
i=1log[pθ(xi)] ≥ ΣN

i=1Eq(z|xi)[log
(
pθ(z)

)
− log

(
pq(z | xi)

)
+ log

(
pθ(xi | z)

)
]

3. Diffusion Models
In the previous question we considered sampling from a discrete distribution. Let’s now see how iteratively
adding Gaussian noise to a data point leads to a noisy sequence, and how the reverse process refines noise
to generate realistic samples.

The classes of generative models we’ve considered so far (VAEs, GANs), typically introduce some sort of
bottleneck (latent representation z) that captures the essence of the high-dimensional sample space (x). An
alternate view of representing probability distributions p(x) is by reasoning about the score function i.e. the
gradient of the log probability density function∇x log p(x).

Given a data point sampled from a real data distribution x0 ∼ q(x), let us define a forward diffusion process
iteratively adding small amount of Gaussian noise to the sample in T steps, producing a sequence of noisy
samples x1, ..xT .

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) q(x1:T |x0) =

T∏
t=1

q(xt|xt−1) (1)

The data sample x0 gradually loses its distinguishable features as the step t becomes larger. Eventually
when T →∞, xT is equivalent to an isotropic Gaussian distribution. (You can assume x0 is Gaussian).

To generative model is therefore the reverse diffusion process, where we sample noise from an isotropic
Gaussian, and iteratively refine it towards a realistic sample by reasoning about q(xt−1|xt).

(a) Anytime Sampling from Intermediate Distributions
Given x0 and the stochastic process in eq. (1), show that there exists a closed form distribution for
sampling directly at the tth time-step of the form

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I)

Review: Generative Models, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 4



Review: Generative Models @ 2023-05-02 18:36:33Z

Solution: Recall the reparameterization trick, where to sample from a Gaussian x ∼ N (µ, σ2), we
could consider the following sampling process:

x = µ+ σϵ where ϵ ∼ N (0, 1)

Therefore, defining γt = 1− βt, we have

xt =
√
γtxt−1 +

√
(1− γt)ϵt−1 where ϵt−1 ∼ N (0, I)

=
√
γt

(√
γt−1xt−2 +

√
(1− γt−1)ϵt−2

)
+
√

(1− γt)ϵt−1 where ϵt−2 ∼ N (0, I)

To simplify this, recall the following lemma, where mixing two Gausssians N (0, σ2
1) and N (0, σ2

2)
gives a Gaussian N (0, σ2

1 + σ2
2). Therefore, mixing samples ϵ1, ϵ2. Building on this insight, we can

combine the noise components ϵ1, ϵ2 into a new random variable:

ϵ̂t−2 ∼ N (0, (γt(1− γt−1) + (1− γt))I)

∼ N (0, (1− γtγt−1)I)

∴ xt =
√
γtγt−1xt−2 +

√
(1− γtγt−1)ϵ̂t−2

Unrolling this recursion, we would get the base case, where for x0 the samples are

xt =
√
Πt

i=1γix0 +
√
1−Πt

i=1γiϵ

Therefore, by introducting αt = Πt
i=1γi we get that

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I)

(b) Reversing the Diffusion Process
Reversing the diffusion process from real to noise would allow us to sample from the real data dis-
tribution. In particular, we would want to draw samples from q(xt−1|xt). Show that given x0, the
reverse conditional probability distribution is tractable and given by

q(xt−1|xt,x0) = N (xt−1;µ(xt,x0), β̂tI)

• Hint: Use Bayes Rule on eq. (1) , assuming that x0 is drawn from Gaussian q(x))
• Hint: When applying Bayes rule to compute q(xt−1|xt, x0), don’t expand the entire Gaussion pdf.

Instead just compute the exponent parts to simplify your work.

• Hint: Scalar form of Gaussian pdf is given as f(z) = 1
σ
√
2π

exp
{
−1

2(
z−µ
σ )2

}
Solution: Applying Bayes rule on q(xt|xt−1, x0) we get the following expression

q(xt−1|xt, x0) = q(xt|xt−1, x0)
q(xt−1|x0)
q(xt|x0)
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From part (a) we know the densities as

q(xt|x0) ∼ N (
√
αtx0, (1− αt)I)

q(xt|xt−1, x0) ∼ N (
√
1− βtxt−1, βtI)

Therefore by plugging into the Bayes rule, we recover (upto proportionality constants)

q(xt−1|xt, x0) ∝ exp
(
− 1

2

{(xt −
√
1− βtxt−1)

2

βt
+

(xt−1 −
√
αt−1x0)

2

1− αt−1
−

(xt −
√
αtx0)

2

1− αt

})
∝ exp

(
− 1

2

{x2t − 2
√
1− βtxt−1xt + (1− βt)x

2
t−1

βt
+

x2t−1 − 2
√
αt−1x0xt−1 + αt−1x

2
0

1− αt−1
−

(xt −
√
αtx0)

2

1− αt

})
Simplifying the expression we get

q(xt−1|xt, x0) ∝ exp
(
− 1

2

{
(
1− βt
βt

+
1

1− αt
)x2t−1 − (

2
√
1− βt
βt

xt +
2
√
αt

1− αt
x0)xt−1 +H(xt, x0)

})
where H(xt, x0) is independent of xt−1 and therefore would be normalized out. Comparing to the
expression for Gaussian N (µ, σ2)

N (µ, σ2) ∝ exp
(
− 1

2

{x2 − 2µx+ µ2

σ2

})
we recover the expression for mean, variance of q(xt−1|xt, x0) as

β̂t = 1/
(1− βt

βt
+

1

1− αt

)
=

1− αt−1

1− αt
βt

(
recall αt =

T∏
i=1

(1− βt)
)

µ(xt, x0) =
(√1− βt

βt
xt +

√
αt

1− αt
x0

)/(1− βt
βt

+
1

1− αt

)
=

√
1− βt(1− αt)

1− αt
xt +

βt
√
αt−1

1− αt
x0

Therefore, under our assumptions, the distribution of q(xt−1|xt, x0) ∼ N (µ(xt, x0), β̂tI).
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