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EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai Review: Basics
1. Dropout on Linear Regression Recall that linear regression optimizes:

L(w) = ||y −Xw||22 (1)

One way of using dropout on the d-dimensional input features xi involves keeping each feature at random
with probability p (and zeroing it out if not kept). This makes our learning objective effectively become

L(w̌) = ER∼Bernoulli(p)

[
||y − (R⊙X)w̌||22

]
(2)

where ⊙ is the element-wise product, and the random binary matrix R ∈ {0, 1}n×d is such that Ri,j ∼i.i.d

Bernoulli(p). We use w̌ to remind you that this is learned by dropout.

Show that we can manipulate (2) to eliminate the expectations and get:

L(w̌) = ||y − pXw̌||22 + p(1− p)||Γ̌w̌||22 (3)

with Γ̌ being a diagonal matrix whose j-th diagonal entry is the norm of the j-th column of the training
matrix X .

Solution: Let P = R⊙X where ⊙ is the element-wise multiplication. Therefore, we have:

||y − Pw||22 = yT y − 2wTP T y + wTP TPw (4)

That is:

ER∼Bernoulli(p)[||y −R⊙Xw||22] = ER[y
T y − 2wTP T y + wTP TPw] (5)

Since the expected value of a matrix is the matrix of the expected value of its elements, we have that

ER[P ]ij = ER[(R⊙X)ij ] = XijER[Rij ] = pXij (6)

It follows that:

ER[2w
TP T y] = 2pwTXT y (7)

and:

(ER[(P
TP )])ij = ΣN

k=1ER[RkiRkjXkiXkj ] (8)
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where:

ER[(P
TP )]ij =

{∑N
k=1 ER[RkiRkjXkiXkj ] =

∑N
k=1 ER[Rki]ER[Rkj ]XkiXkj = p2(XTX)ij if i ̸= j∑N

k=1 ER[R
2
kiXkiXkj ] =

∑N
k=1 ER[R

2
ki]XkiXkj = p(XTX)ij if i = j

(9)

Finally, we note that :

(ER[(P
TP )])ij − p2(XTX)ij =

{
0 if i ̸= j

(p− p2)(XTX)ij if i = j
(10)

we now can put everything together as follow:

L(w) = ER[||y −R⊙Xw||22] (11)

= ER[y
T y − 2wTP T y + wTP TPw] (12)

= yT y − 2pwTXT y + p2wTXTXw − p2wTXTXw + wTER[P
TP ]w (13)

= ||y − pXw||22 + (wTER[P
TP ]w − p2wTXTXw) (14)

= ||y − pXw||22 + (p− p2)wT (diag(XTX))w (15)

= ||y − pXw||22 + p(1− p)wT (diag(XTX))w (16)

= ||y − pXw||22 + p(1− p)||Γ̌w||22 (17)

(18)

where diag(XTX) refers to the matrix where the non-diagonal elements of XTX are set to 0, and Γ̌ =
(diag(XTX))1/2, which exists as XTX is PSD and therefore has non-negative diagonal elements.
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2. Feature Dimensions in CNN
We are going to describe a convolutional neural net using the following pieces:

• CONV3-F denotes a convolutional layer with F different filters, each of size 3 × 3 × C, where C is
the depth (i.e. number of channels) of the activations from the previous layer. Padding is 1, and stride
is 1.

• POOL2 denotes a 2× 2 max-pooling layer with stride 2 (pad 0)

• FLATTEN just turns whatever shape input tensor into a one-dimensional array with the same values
in it.

• FC-K denotes a fully-connected layer with K output neurons.

Note: All CONV3-F and FC-K layers have biases as well as weights. Do not forget the biases when
counting parameters.

We are going to use this network to do inference on a single input. Fill in the missing entries in this table of
the size of the activations at each layer, and the number of parameters at each layer. You can/should write
your answer as a computation (e.g. 128× 128× 3) in the style of the already filled-in entries of the table.

Layer Number of Parameters Dimension of Activations
Input 0 28× 28× 1

CONV3-10 Solution: 3× 3× 1× 10 + 10 28× 28× 10

POOL2 0 14× 14× 10

CONV3-10 3× 3× 10× 10 + 10 Solution: 14× 14× 10

POOL2 Solution: 0 Solution: 7× 7× 10

FLATTEN 0 490

FC-3 Solution: 490× 3 + 3 3
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