EECS 182 Deep Neural Networks

Spring 2023 Anant Sahai

1. Dropout on Linear Regression Recall that linear regression optimizes:

$$
\begin{equation*}
\mathcal{L}(\mathbf{w})=\|\mathbf{y}-X \mathbf{w}\|_{2}^{2} \tag{1}
\end{equation*}
$$

One way of using dropout on the d-dimensional input features \mathbf{x}_{i} involves keeping each feature at random with probability p (and zeroing it out if not kept). This makes our learning objective effectively become

$$
\begin{equation*}
\mathcal{L}(\check{\mathbf{w}})=\mathbb{E}_{R \sim \operatorname{Bernoulli}(p)}\left[\|\mathbf{y}-(R \odot X) \check{\mathbf{w}}\|_{2}^{2}\right] \tag{2}
\end{equation*}
$$

where \odot is the element-wise product, and the random binary matrix $R \in\{0,1\}^{n \times d}$ is such that $R_{i, j} \sim_{i . i . d}$ Bernoulli (p). We use \mathbf{w} to remind you that this is learned by dropout.

Show that we can manipulate (2) to eliminate the expectations and get:

$$
\begin{equation*}
\mathcal{L}(\check{\mathbf{w}})=\|\mathbf{y}-p X \check{\mathbf{w}}\|_{2}^{2}+p(1-p)\|\check{\Gamma} \check{\mathbf{w}}\|_{2}^{2} \tag{3}
\end{equation*}
$$

with $\check{\Gamma}$ being a diagonal matrix whose j-th diagonal entry is the norm of the j-th column of the training matrix X.

2. Feature Dimensions in CNN

We are going to describe a convolutional neural net using the following pieces:

- CONV3-F denotes a convolutional layer with F different filters, each of size $3 \times 3 \times C$, where C is the depth (i.e. number of channels) of the activations from the previous layer. Padding is 1 , and stride is 1 .
- POOL2 denotes a 2×2 max-pooling layer with stride $2(\operatorname{pad} 0)$
- FLATTEN just turns whatever shape input tensor into a one-dimensional array with the same values in it.
- FC-K denotes a fully-connected layer with K output neurons.

Note: All CONV3-F and FC-K layers have biases as well as weights. Do not forget the biases when counting parameters.

We are going to use this network to do inference on a single input. Fill in the missing entries in this table of the size of the activations at each layer, and the number of parameters at each layer. You can/should write your answer as a computation (e.g. $128 \times 128 \times 3$) in the style of the already filled-in entries of the table.

Layer	Number of Parameters	Dimension of Activations
Input	0	$28 \times 28 \times 1$
CONV3-10		$28 \times 28 \times 10$
POOL2	0	$14 \times 14 \times 10$
CONV3-10	$3 \times 3 \times 10 \times 10+10$	
POOL2		490
FLATTEN	0	3
FC-3		

