
Final Review: Transformers @ 2023-05-02 21:35:19Z

EECS 182 Deep Neural Networks
Spring 2023 Anant Sahai Final Review: Transformers

Figure 1: The diagram of the Transformer architecture.

Figure 1 shows the diagram of the Transformer architecture introduced in Attention is All You Need.

1. Scaled Dot-Product Attention
1 def scaled_dot_product_attention(q, k, v,
2 key_padding_mask=None, causal=False):
3 d_head = q.size(-1)
4 s = (einops.einsum(q, k, "n tl dh, n sl dh -> n tl sl")
5 / d_head ** 0.5)
6 if key_padding_mask is not None:
7 s = s.masked_fill(
8 key_padding_mask.unsqueeze(1).to(torch.bool),
9 float("-inf"),

10)
11 if causal:
12 attn_mask = future_mask[: s.size(1), : s.size(2)].to(s)
13 s += attn_mask.unsqueeze(0)
14 a = F.softmax(s, dim=-1, dtype=torch.float32).type_as(s)
15 return einops.einsum(a, v, "n tl sl, n sl dh -> n tl dh")

(a) In scaled-dot product attention, why do we divide pre-softmax attention scores by
√
dhead (line 5),

and what would be the consequence of not doing so. Prove your arguments mathematically,
assuming the input tensor elements are i.i.d. and have a mean of 0 and standard deviation of 1?

Final Review: Transformers, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Final Review: Transformers @ 2023-05-02 21:35:19Z

Solution: Let consider a single query vector q ∈ Rdhead and n key vectors k1, . . . ,kn ∈ Rdhead .
Let pre-softmax attention score si = qTki. Compute the mean and variance of each si:

E(si) =
dhead∑
j=1

E(qiki,j) =
dhead∑
j=1

E(qi)E(ki,j) = 0

Var(si) = E(S2
i)− E(Si)

2 =

dhead∑
j=1

E(q2i k2i,j)− 0 =

dhead∑
j=1

E(q2i)E(k2i,j) = dhead

Let a = softmax(s) represent the post-softmax attention scores. The output distribution of softmax
becomes sharper with increasing input scale. Given that Var(si) is proportional to dhead, for any ϵ > 0,
a sufficiently large dhead can be found such that aimax > 1 − ϵ for the entry imax with the highest pre-
softmax score, while all other elements i satisfy ai < ϵ.
We know that the Jacobian of softmax is:

∂aT

∂s
= diag(a)− aaT

Its squared Frobenius norm is:

∥∂a
T

∂s
∥2F = ∥diag(a)− aaT ∥2F

=
n∑

i=1

a2i (1− ai)
2 + 2

∑
1≤i<j≤n

a2i a
2
j

≤ (1− aimax)
2 · 12 +

∑
i ̸=imax

a2i · 12 + 2
∑

1≤i<j≤n

min{ai, aj}2 · 12

< ϵ2 + (n− 1)ϵ2 + 2
n(n− 1)

2
ϵ2

≤ n2ϵ2

It means that the Jacobian matrix will also go infinitely small, causing the vanishing gradient gradient.

2. Multi-head Attention
1 def forward(self, q, k, v, key_padding_mask=None, causal=False):
2 q = self.q_proj(q)
3 k = self.k_proj(k)
4 v = self.v_proj(v)
5 q = einops.rearrange(q, "b tl (nh dh) -> (b nh) tl dh",
6 nh=self.n_heads)
7 k = einops.rearrange(k, "b sl (nh dh) -> (b nh) sl dh",
8 nh=self.n_heads)
9 v = einops.rearrange(v, "b sl (nh dh) -> (b nh) sl dh",

10 nh=self.n_heads)
11 if key_padding_mask is not None:
12 key_padding_mask = einops.repeat(

Final Review: Transformers, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 2

Final Review: Transformers @ 2023-05-02 21:35:19Z

13 key_padding_mask, "b sl -> (b nh) sl",
14 nh=self.n_heads)
15 o = scaled_dot_product_attention(q, k, v, key_padding_mask, causal)
16 o = einops.rearrange(o, "(b nh) tl dh -> b tl (nh dh)",
17 nh=self.n_heads)
18 return self.o_proj(o)

(a) Let’s review the rationale behind multi-head attention. Given that softmax typically exhibits unimodal
behavior, it can be approximated by argmax attention. Determine the receptive field size of a node
at layer n for the following scenarios:
(i) With a single head.

(ii) With two heads.
(iii) With k heads.

Solution: With only a single head, we only have attention with one other time step (ie. the key
vector), so with the residual connection in the transformer block, a branching factor of 2 at each level.
Hence total size is 2n.
With two heads, each hidden state can pay attention to itself and two other hidden states, so we have a
branching factor of 3. Total size of receptive field is 3n.
Similarly, with k heads, size of the receptive field is (k + 1)n

(b) In NLP, a batch of sentences typically contains sequences of varying lengths, requiring padding to
match the longest sentence. To prevent these pad tokens from affecting computation, we apply key
padding masks and causal masks to attentions. Describe how these masks are applied in each of the
following scenarios (applied to which multi-head attention modules in which Transformer stack):

(i) Transformer encoder (e.g., BERT) tarined for text classification.
(ii) Transformer decoder (e.g., GPT-3) trained for sequence generation.

(iii) Transformer encoder-decoder (e.g., T5) trained for machine translation.

Solution:
(i) In Transformer encoder (e.g., BERT) tarined for text classification. Only key padding mask is

applied to encoder self-attention.
(ii) In Transformer decoder (e.g., GPT-3) trained for sequence generation. Only causal mask is ap-

plied to self-attention. Note that if we do padding on the right (which is the usual case), key
padding mask is not needed when there is causal mask.

(iii) In Transformer encoder-decoder (e.g., T5) trained for machine translation, key padding mask
is applied to encoder self-attention and decoder-encoder cross-attention. As for decoder self-
attention, causal mask is applied, and key padding mask is not needed as long as we are padding
on the right.

(c) Determine the asymptotic time complexity of multi-head attention as a function of key/value length
ns, query length nt, head dimension dhead, and the number of heads h. Ignore key padding masks and
causal masks.

Solution: Let’s go through the code line by line. Note that dmodel = dheadh

Line 2: Θ(ntd
2
model)

Line 3, 4: Θ(nsd
2
model)

Line 5: Θ(ntdheadh)

Final Review: Transformers, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Final Review: Transformers @ 2023-05-02 21:35:19Z

Line 6, 7: Θ(nsdheadh)

Line 15: Let’s step into scaled_dot_product_attention

• Line 4-5: Θ(hntnsdhead)

• Line 14: Θ(hntns)

• Line 15: Θ(hntnsdhead)

Line 16-17: Θ(hntdhead)

Line 18: Θ(ntd
2
model)

So the total time complexity is Θ(ntd
2
headh

2 + nsd
2
headh

2 + ntnsdheadh)

This also equals to Θ(ntd
2
model + nsd

2
model + ntnsdmodel)

(d) Based on your analysis, identify the computational efficiency bottleneck for the following scenar-
ios:

(i) When dmodel is large but sequences are short.
(ii) When sequences are long but dmodel is small.

Solution:
(i) When dmodel is large but sequences are short, the bottleneck is line 2, 3, 4, 18 of multi-head

attention, which is the query/key/value/output projections.
(ii) When sequences are long but dmodel is small, the bottelneck is line 4, 15 of scaled dot-product

attention: computing attention scores and linear combination of values according to attention
scores, respectively.

3. Layer Normalization
Examine the Transformer diagram, which includes an “add and norm” layer after each multi-head attention
or feed-forward module. The “add” represents a residual connection, inspired by ResNet. This question
serves as a review of layer normalization.

(a) Consider an input tensor X of shape [B,D], where B is the batch size and D is the hidden state
dimension. Layer normalization is applied to obtain output tensor Y with the same shape. For an
input element xi,j ∈ R and its corresponding output yi,j ∈ R, determine which the value of yi,j
depends on (select all that apply):
(i) xi,j

(ii) xi′,j where i ̸= i′

(iii) xi,j′ where j ̸= j′

(iv) xi′,j′ where i ̸= i′ and j ̸= j′

Repeat the same analysis for batch normalization.
Solution: Layer normalization: (i), (iii). Layer normalization is elementwise, meaning it is applied
independently to each input vector within the batch.
Batch normalization: (i), (ii). Batch normalization is computed using the statistics of corresponding
elements across different vectors in the batch.
For further clarification, refer to the formulas for layer normalization and batch normalization.

(b) Prove the following: Given an input vector x ∈ Rd and applying layer normalization with scale γ,
bias β, and ϵ = 0, the output y satisfies

∥y − β1∥2 = γ
√
d

Final Review: Transformers, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 4

Final Review: Transformers @ 2023-05-02 21:35:19Z

Solution: The layer normalization can be expressed as:

z = (x− µ1)/σ.

where µ =
1

d
xT1 and σ =

√
1

d
∥x− µ1∥22.

and

y = γz+ β1.

So zT1 = 0, ∥z∥2 =
√
d

Therefore

∥y − β1∥2 = ∥γz∥2 = γ
√
d

Final Review: Transformers, © UCB EECS 182, Spring 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 5

