EECS 182 Deep Neural Networks Spring 2023 Anant Sahai Final Review: Transformers

Figure 1: The diagram of the Transformer architecture.

Figure 1 shows the diagram of the Transformer architecture introduced in Attention is All You Need.

1. Scaled Dot-Product Attention

```
def scaled_dot_product_attention(q, k, v,
1
2
           key_padding_mask=None, causal=False):
3
       d head = q.size(-1)
4
       s = (einops.einsum(q, k, "n tl dh, n sl dh -> n tl sl")
5
           / d head ** 0.5)
6
       if key_padding_mask is not None:
7
           s = s.masked_fill(
8
                key_padding_mask.unsqueeze(1).to(torch.bool),
9
                float("-inf"),
10
           )
11
       if causal:
           attn_mask = future_mask[: s.size(1), : s.size(2)].to(s)
12
13
           s += attn_mask.unsqueeze(0)
14
       a = F.softmax(s, dim=-1, dtype=torch.float32).type_as(s)
       return einops.einsum(a, v, "n tl sl, n sl dh -> n tl dh")
15
```

(a) In scaled-dot product attention, why do we divide pre-softmax attention scores by $\sqrt{d_{\text{head}}}$ (line 5), and what would be the consequence of not doing so. Prove your arguments mathematically, assuming the input tensor elements are i.i.d. and have a mean of 0 and standard deviation of 1?

2. Multi-head Attention

1	def	<pre>forward(self, q, k, v, key_padding_mask=None, causal=False):</pre>
2		q = self.q_proj(q)
3		<pre>k = self.k_proj(k)</pre>
4		v = self.v_proj(v)
5		q = einops.rearrange(q, "b tl (nh dh) -> (b nh) tl dh",
6		nh=self.n_heads)
7		<pre>k = einops.rearrange(k, "b sl (nh dh) -> (b nh) sl dh",</pre>
8		nh=self.n_heads)
9		v = einops.rearrange(v, "b sl (nh dh) -> (b nh) sl dh",
10		nh=self.n_heads)
11		<pre>if key_padding_mask is not None:</pre>
12		key_padding_mask = einops.repeat(
13		key_padding_mask, "b sl -> (b nh) sl",
14		nh=self.n_heads)
15		<pre>o = scaled_dot_product_attention(q, k, v, key_padding_mask, causal)</pre>
16		<pre>o = einops.rearrange(o, "(b nh) tl dh -> b tl (nh dh)",</pre>
17		nh=self.n_heads)
18		<pre>return self.o_proj(0)</pre>

- (a) Let's review the rationale behind multi-head attention. Given that softmax typically exhibits unimodal behavior, it can be approximated by argmax attention. Determine the receptive field size of a node at layer n for the following scenarios:
 - (i) With a single head.
 - (ii) With two heads.
 - (iii) With k heads.
- (b) In NLP, a batch of sentences typically contains sequences of varying lengths, requiring padding to match the longest sentence. To prevent these pad tokens from affecting computation, we apply *key padding masks* and *causal masks* to attentions. Describe how these masks are applied in each of the following scenarios (applied to which multi-head attention modules in which Transformer stack):
 - (i) Transformer encoder (e.g., BERT) tarined for text classification.
 - (ii) Transformer decoder (e.g., GPT-3) trained for sequence generation.
 - (iii) Transformer encoder-decoder (e.g., T5) trained for machine translation.
- (c) Determine the asymptotic time complexity of multi-head attention as a function of key/value length n_s , query length n_t , head dimension d_{head} , and the number of heads h. Ignore key padding masks and causal masks.
- (d) Based on your analysis, identify the computational efficiency bottleneck for the following scenarios:
 - (i) When d_{model} is large but sequences are short.
 - (ii) When sequences are long but d_{model} is small.

3. Layer Normalization

Examine the Transformer diagram, which includes an "add and norm" layer after each multi-head attention or feed-forward module. The "add" represents a residual connection, inspired by ResNet. This question serves as a review of layer normalization.

- (a) Consider an input tensor \mathbf{X} of shape [B, D], where B is the batch size and D is the hidden state dimension. Layer normalization is applied to obtain output tensor \mathbf{Y} with the same shape. For an input element $x_{i,j} \in \mathbb{R}$ and its corresponding output $y_{i,j} \in \mathbb{R}$, determine which the value of $y_{i,j}$ depends on (select all that apply):
 - (i) $x_{i,j}$
 - (ii) $x_{i',j}$ where $i \neq i'$
 - (iii) $x_{i,j'}$ where $j \neq j'$
 - (iv) $x_{i',j'}$ where $i \neq i'$ and $j \neq j'$

Repeat the same analysis for batch normalization.

(b) **Prove the following:** Given an input vector $\mathbf{x} \in \mathbb{R}^d$ and applying layer normalization with scale γ , bias β , and $\epsilon = 0$, the output \mathbf{y} satisfies

$$\|\mathbf{y} - \beta \mathbf{1}\|_2 = \gamma \sqrt{d}$$