
CS 184: Assignment 1 — Transformations

Ravi Ramamoorthi

Goals and Motivation

The purpose of the homework is to fill in the code to allow rotation of the viewpoint around a scene, using
what is known as a crystal ball interface. This homework is to be done individually, but your submission
must include your partner for homework 2.

The assignment was designed with two main goals, as a gentle introduction to the course and initial
material on transformations. The first goal is to understand how viewing and other transformations are used
to render scenes. You will implement a simple crystall ball interface, standardly used for viewing, and also
see how to build up the standard transformation matrices for this purpose.

The second goal is to get some initial familiarity with OpenGL so you can be set up for the next
assignments. In particular, the assignment skeleton is written in OpenGL and GLSL. It also uses the
modern GLM OpenGL Mathematics library, available at http://glm.g-truc.net/. The library and zip
file are included in the skeleton to save you the trouble of downloading it. For this assignment itself, you
do not strictly need to know much about OpenGL or shaders, but try to look through the main program
and shaders to get a sense of how it all works. You are welcome to play around with it and explore; try
to understand the solution framwork. However, do note for the final submission, the requirement is to not
submit any modifications to the main assignment framework. This requirement is to provide standardization
and for grading.

While the actual coding work is minimal, some thinking is needed, so you will want to start early. You
may also run into unexpected problems with OpenGL, GLM, or GLSL for this first assignment. Post any
questions you have to the newsgroup, since other students will want to see the answers too. However, do
not post anything resembling code.

Logistics and Submission

Download the assignment (we provide zip files for Linux and Windows, as well as for the source code if you
use a different platform). Now, compile and run the assignment. You should see the same teapot as in the
solution on a blue background, but the arrow keys won’t work. Also, if you hit ’g’ to toggle to using your
own lookAt function, you will get something weird. Your job will be to make the arrow keys and viewing
work.

You should have debugged issues with compilation already in homework 0. We will discuss OpenGL and
GLSL programming in class, but what you actually need to do in this assignment doesn’t strictly require that
information. We do provide the GLM math library, and in fact, your inputs and outputs will be GLM vectors
and matrices. The operation of the library is quite intuitive, except for caveats below. Documentation can
be found online, or in the doc/ subdirectory of the GLM installation. We have also provided a solution in
transforms sol; your program should match that exactly (this is important mainly for nailing down the sign
conventions). Please do not attempt to decompile or otherwise reverse engineer the solution.

For the final submission only make changes to Transform.cpp. Do not add any #include lines to
the code. Do not change Transform.h. If you do make changes to any of the other files, make sure your
solution works without those changes. You will only be submitting Transform.cpp. We will be using the
submit software for submission of this assignment, as with homework 0. Run submit hw1 from a directory
containing only the file, Transform.cpp. The directory should also include a file, partner.txt that lists your
partner for homework 2; this is required. Optionally, your directory may include a file comments.txt with
any comments on the assignment or helpful suggestions for the future.

1

http://glm.g-truc.net/


Assignment Specification

You will be implementing a classic crystal ball interface. This simulates a world in which the viewer is glued
to the outside of a transparent sphere, looking in. The sphere is centered at the origin, and that is the
direction towards which your eye is always pointing. At the origin, there is something interesting to look at,
in this case, a teapot.

You can change the viewpoint by rotating the crystal ball in any direction about the origin. Usually
this is done with a mouse, but you will be using the keyboard for this assignment to make things easier.
You must think about how the position of the eye and direction of the up vector change with left-right or
up-down rotations.

Fill in the parts of Transform.cpp that say “//FILL IN YOUR CODE HERE”. First, you should fill in
left() and up(). Once these are working, fill in lookAt(). You must also fill in the helper function rotate()
and you can use it in your code (this function simply sets up the rotation matrix for rotation about a given
axis; we will discuss construction of this matrix in class).

The compiled correct solution has been provided for you with name transforms sol. Your solution must
behave identically. In addition, the skeleton code allows the use of the ’g’ key to toggle between using the
system (GLM) lookAt command and yours (initially set to the system command). One verification is to
press the arrow keys a few times and then hit ’g’ to toggle and verify that your lookAt() matches the system
version. This verification is usable even if you are on a different platform and cannot get the pre-compiled
solution to work. Note though, that you still need to follow the pre-compiled solution in terms of its sign
conventions and behavior for left() and up().

GLM Libraries: Documentation, Restrictions and Caveats

In the course of modifying Transform.cpp, you will want to make use of the helper classes and functions
from the GLM libraries. The documentation describes them, but for the most part is intuitive (see caveats
below and in code comments though). In particular, you have vec3, vec4, mat3 and mat4 classes for matrix
and vector storage and operations. The functions rotate and lookAt must return matrices. In fact, these are
all in the glm namespace and we use typedefs in Transform.h.

By default, matrices are stored in row-major order (but see caveats below) and can be indexed simply
at matrix[0][3] for example, to get the first row and fourth column of a mat4 matrix. Vectors can simply be
indexed as arrays. Matrix-vector and matrix-matrix multiplication, addition etc. work simply as overloaded
operators, but see caveats below. A matrix or vector can be initialized with a constructor that specifies
its elements, for instance vec4 V(a,b,c,d) for a vec4 or a matrix constructor with 16 arguments for a mat4.
Initializing with a single value also repeats the elements for example vec3 v(1.0). For a matrix, it instead
repeats the elements on the diagonal. An identity matrix can be created using for example, mat4 I(1.0). In
general, GLM is designed to have the same syntax and be compatible with OpenGL and GLSL.

Helper Functions and Restrictions: You are welcome to use glm::dot, glm::cross and glm::normalize
to operate on vectors for standard dot-products, cross-products and normalization. You may not use
other glm or OpenGL functions, except for overloaded operators for arithmetic operations and array
subscripting. You may not use any OpenGL or glu functions.

Caveats on Row vs Column Major: OpenGL stores matrices in column-major order, while standard
GLM uses row-major but is designed to be compatible with OpenGL. In addition, matrix multiplication in
OpenGL right-multiplies, which is opposite from standard conventions. All of this can get pretty confusing.
As far as this assignment is concerned, one key caveat is in writing a matrix-vector product like y = M * x
where M is a matrix, while x and y are vectors. In the default case, GLM will treat M as column-major
effectively using its transpose. The “correct” way is to write y = x * M which seems to be handled as
expected. Because of this confusion, we recommend that you use matrix-vector multiplication sparingly, and
avoid matrix-matrix multiplication altogether, unless you really know what you are doing for this assignment.

Please also note that you will return a row major matrix from lookAt (that the skeleton code automat-
ically transposes for compatibility with OpenGL. In constrast glm::lookAt already does the transpose to be
compatible with older OpenGL code). Since GLM is just a header library, it’s actually easy to also just

2



inspect the source code to see what it’s actually doing if you are confused. If you didn’t understand this last
paragraph at all, you don’t need to worry about it.

Hints

We include below some optional hints that may be of interest. You are not required to use or refer to any
of the material here, however. This mainly pertains to the material needed in Tranform.cpp. Main.cpp is
reasonably documented, and one goal is for you to try to learn some OpenGL if you want to look at it in more
detail. You may want to augment it, for example adding options for scale and translation as well. However,
your final submission should only include Transform.cpp, and should work with unmodified skeleton code.
Rotate: Rotate just implements the standard axis-angle formula to create a rotation matrix. We will discuss
the formula in class; this is a good exercise in correctly coding vectors and matrices. You will of course need
to use standard trigonometric functions and convert degrees to radians.
Left: The simplest function to fill in is left. The input is the degrees of rotation, the current eye 3-vector and
current up 3-vector. Note that you may need to convert degrees to radians (in the standard way) to set up
a rotation matrix. Your job is to update the eye and up vectors appropriately for the user moving left (and
equivalently right). This function should not require more than about 3 lines of code to do the appropriate
rotations.
Up: The up function is slightly more complicated, but satisfies the same basic requirements as left. You
might want to make use of helper functions like glm::cross and auxiliary vectors. Again, you need to update
the eye and up vectors correctly.
lookAt: Finally, you need to code in the transformation matrix, given the eye and up vectors. You will likely
need to refer to the class notes to do this. It is likely to help to define an xyz coordinate frame (as 3 vectors),
and to build up an auxiliary 4× 4 matrix M which is returned as the result of this function. Consult class
notes and lectures for this part.

Acknowledgements

This assignment was developed with Aner Ben-Artzi (a former Berkeley undergrad) a few years ago. The
skeleton has been rewritten in modern OpenGL using GLM and GLSL and a few clarifications have been
added.

3


