Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 1: Overview and History Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs184

Goals

- **Systems:** Write complex 3D graphics programs (real-time scene in OpenGL, offline raytracer)
- Theory: Mathematical aspects and algorithms underlying modern 3D graphics systems
- This course is *not* about the specifics of 3D graphics programs and APIs like Maya, Alias, DirectX but about the concepts underlying them.

Course Staff

- Ravi Ramamoorthi
 - PhD Stanford, 2002. PhD thesis developed
 - ' widely used in games
 - (e.g. Halo series), movies (e.g. Avatar), etc. (Adobe, ...)

 At Columbia 2002-2008, research on rendering/image
 - synthesis, data-driven appearance.
 - At Berkeley since Jan 2009. 2nd time teaching 184. New this semester: modern 3D graphics programs with shaders
- Teaching Assistants: cs184@imail.eecs.berkeley.edu
 - Fu-Chung Huang
 - Brandon Wang
- [Grader to be announced]

Why Study 3D Computer Graphics?

- Applications (discussed next)
- Fundamental Intellectual Challenges

Some content inspired by Pat Hanrahan from Stanford's CS148

Entertainment Movies: Brave, Pixar 2012

Digital Visual Media

- From text to images to video (to 3D?)
- Image and video processing and photography
- Multimedia computers, tablets, phones
- Flickr, YouTube, WebGL
- Real, Virtual Worlds (Google Earth, Second Life)
- Electronic publishing
- Online gaming
- 3D printers and fabrication

Logistics Website http://inst.eecs.berkeley.edu/~cs184 has most of the information (look at it) Office hours: 3pm – 4pm on class days See website for sections, TA office hours Course newsgroup on Piazza Textbook: Fundamentals of Computer Graphics by Shirley (3rd edition): Not strictly needed OpenGL Programming Guide, GLSL Book Website for late, collaboration policy, etc Questions?

Workload

- Lots of fun, rewarding but may involve significant work
- 6 programming projects; almost all are time-consuming (but you have groups of two for projects 2,3,5). START EARLY !!
- Course will involve understanding of mathematical, geometrical concepts taught (tested on midterm, final)
- Prerequisites: Solid C/C++/Java programming background. Linear algebra (review on Mon) and general math skills
- Should be a difficult, but fun and rewarding course

To Do

- Look at website
- Various policies for course. E-mail if confused.
- Skim assignments if you want. All are ready
- Assignment 0a, Due Jan 26 Thu (see website). Compilation and Photo [both essential]
- Any questions?

History

- Brief history of significant developments in field
- End with a video showcasing graphics

The term Computer Graphics was coined by William Fetter of Boeing in 1960 First graphic system in mid 1950s USAF SAGE radar data (developed MIT

How far we've come: TEXT

Display

From Text to GUIs

Invented at PARC circa 1975. Used in the Apple Macintosh, and now prevalent everywhere.

Drawing: Sketchpad (1963)

- Sketchpad (Sutherland, MIT 1963)
- First interactive graphics system (VIDEO)
- Many of concepts for drawing in current systems

 - Pop up menus
 Constraint-based drawing
 - Hierarchical Modeling

History of Computer Animation

- 10 min clip from video on history of animation
- Covers sketchpad, animation, basic modeling, rendering
- A synopsis of what this course is about

Related courses

- CS 283, graduate class taught every year (this semester)
- Many CS 294 and similar courses, e.g. visualization, physical simulation, geometric modeling, ...
- Other related courses: Computer Vision, Robotics, User Interfaces Computational Geometry, Photography, ...