Foundations of Computer Graphics (Spring 2012)

CS 184, Lecture 12: Curves 1
http://inst.eecs.berkeley.edu/~cs184

\qquad

- How do we model complex shapes?
- In this course, only 2D curves, but can be used to create interesting 3D shapes by surface of revolution, lofting etc
- Techniques known as spline curves
- This unit is about mathematics required to draw these spline curves, as in HW 2
- History: From using computer modeling to define car bodies in auto-manufacturing. Pioneers are Pierre Bezier (Renault), de Casteljau (Citroen)

Course Outline

- 3D Graphics Pipeline

Outline of Unit

- Bezier curves
- deCasteljau algorithm, explicit form, matrix form
- Polar form labeling (next time)
- B-spline curves (next time)
- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4×4 matrix for cubics
- Properties: Advantages and Disadvantages

Geometric interpretation: Quadratic

DeCasteljau Implementation

Input: Control points C_{i} with $0 \leq i \leq i t$ where n is the degree.
Output: $f(w)$ where w is the parameter for evaluation
1 for $($ lewel $=n$; level ≥ 0; level --$)$;
2 if (icvei $==n)!/ /$ initiai controi points
$3 \quad \forall i: 0 \leq i \leq n: p_{t}^{l e d}=C_{i}$: continue : \}
4 for $(i=0 ; i \leq$ lewe $; i++)$

6)
$7 f(u)=1,0$

- Can be optimized to do without auxiliary storage

Summary of HW2 Implementation

Bezier (Bezier2 and Bspline discussed next time)

- Arbitrary degree curve (number of control points)
- Break curve into detail segments. Line segments for these
- Evaluate curve at locations $0,1 /$ detail, $2 /$ detail, ... , 1
- Evaluation done using deCasteljau
- Key implementation: deCasteljau for arbitrary degree " Is anyone confused? About handling arbitrary degree?
- Can also use alternative formula if you want
" Explicit Bernstein-Bezier polynomial form (next)
- Questions?

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4×4 matrix for cubics
- Properties: Advantages and Disadvantages

Recap formulae

- Linear combination of basis functions

Linear: $\quad F(u)=P_{0}(1-u)+P_{1} u$
Quadratic: $F(u)=P_{0}(1-u)^{2}+P_{1}[2 u(1-u)]+P_{2} u^{2}$
Cubic: $\quad F(u)=P_{0}(1-u)^{3}+P_{1}\left[3 u(1-u)^{2}\right]+P_{2}\left[3 u^{2}(1-u)\right]+P_{3} u^{3}$
Degree $\mathrm{n}: ~ F(u)=\sum_{k} P_{k} B_{k}^{n}(u)$
$B_{k}^{n}(u)$ areBernstein-Bezier polynomials

- Explicit form for basis functions? Guess it?

Recap formulae

- Linear combination of basis functions

Linear: $\quad F(u)=P_{0}(1-u)+P_{1} u$
Quadratic: $F(u)=P_{0}(1-u)^{2}+P_{1}[2 u(1-u)]+P_{2} u^{2}$
Cubic: $\quad F(u)=P_{0}(1-u)^{3}+P_{1}\left[3 u(1-u)^{2}\right]+P_{2}\left[3 u^{2}(1-u)\right]+P_{3} u^{3}$
Degree n: $F(u)=\sum_{k} P_{k} B_{k}^{n}(u)$
$B_{k}^{n}(u)$ areBernstein-Bezier polynomials

- Explicit form for basis functions? Guess it?
- Binomial coefficients in [(1-u)+u] ${ }^{n}$

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4×4 matrix for cubics
- Properties: Advantages and Disadvantages

$$
B_{k}^{n}(u)=\frac{n!}{k!(n-k)!}(1-u)^{n-k} u^{k}
$$

Issues for Bezier Curves

Main question: Given control points and constraints (interpolation, tangent), how to construct curve?

- Algorithmic: deCasteljau algorithm
- Explicit: Bernstein-Bezier polynomial basis
- 4×4 matrix for cubics
- Properties: Advantages and Disadvantages

Properties (brief discussion)

- Demo:
" Interpolation: End-points, but approximates others
- Single piece, moving one point affects whole curve (no local control as in B-splines later)
- Invariant to translations, rotations, scales etc. That is, translating all control points translates entire curve
- Easily subdivided into parts for drawing (next lecture): Hence, Bezier curves easiest for drawing

