Foundations of Computer Graphics
(Spring 2012)
CS 184, Lecture 13: Curves 2
http://inst.eecs.berkeley.edu/~cs184

Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves
- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

Idea of Blossoms/Polar Forms

- (Optional) Labeling trick for control points and intermediate deCasteljau points that makes thing intuitive
- E.g. quadratic Bezier curve F(u)
- Define auxiliary function $f\left(u_{1}, u_{2}\right)$ [number of args = degree]
- Points on curve simply have $u_{1}=u_{2}$ so that $F(u)=f(u, u)$
- And we can label control points and deCasteljau points not on curve with appropriate values of $\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)$
$f(0,1)=f(1,0)$

tric interpretation: Quadratic

Idea of Blossoms/Polar Forms

- Points on curve simply have $u_{1}=u_{2}$ so that $F(u)=f(u, u)$
- f is symmetric $f(0,1)=f(1,0)$
- Only interpolate linearly between points with one arg different - $f(0, u)=(1-u) f(0,0)+u f(0,1)$ Here, interpolate $f(0,0)$ and $f(0,1)=f(1,0)$

$f(1,1)=F(1) \quad F(u)=f(u u)=(1-u)^{2} P 0+2 u(1-u) P 1+u^{2} P 2$

Polar Forms: Cubic Bezier Curve

Geometric Interpretation: Cubic

Subdividing Bezier Curves

Drawing: Subdivide into halves ($u=1 / 2$) Demo:

- Recursively draw each piece
" At some tolerance, draw control polygon
- Trivial for Bezier curves (from deCasteljau algorithm): hence widely used for drawing

Why specific labels/ control points on left/right?

- How do they follow from deCasteljau?

Why Polar Forms?

- Simple mnemonic: which points to interpolate and how in deCasteljau algorithm
- Easy to see how to subdivide Bezier curve (next) which is useful for drawing recursively
- Generalizes to arbitrary spline curves (just label control points correctly instead of 000111 for Bezier)
- Easy for many analyses (beyond scope of course)

Summary for HW 2

" Bezier2 (Bezier discussed last time)

- Given arbitrary degree Bezier curve, recursively subdivide for some levels, then draw control polygon
- Generate deCasteljau diagram; recursively call a routine with left edge and right edge of this diagram
- You are given some code structure; you essentially just need to compute appropriate control points for left, right

Outline of Unit

- Bezier curves (last time)
- deCasteljau algorithm, explicit, matrix (last time)
- Polar form labeling (blossoms)
- B-spline curves
- Not well covered in textbooks (especially as taught here). Main reference will be lecture notes. If you do want a printed ref, handouts from CAGD, Seidel

B-Splines

- Cubic B-splines have C^{2} continuity, local control
- 4 segments / control point, 4 control points/segment
- Knots where two segments join: Knotvector
- Knotvector uniform/non-uniform (we only consider uniform cubic B-splines, not general NURBS)

Polar Forms: Cubic Bspline Curve

- Labeling little different from in Bezier curve
- No interpolation of end-points like in Bezier
- Advantage of polar forms: easy to generalize

Uniform knot vector:
$-2,-1,0,1,2,3$ Labels correspond to this

deCasteljau: Cubic B-Splines

" Easy to generalize using polar-form labels

- Impossible remember
 without

deCasteljau: Cubic B-Splines

- Easy to generalize using polar-form labels
- Impossible remember
 without
(1-u)/3 (2+u)/3 (1-u)/3

Summary of HW 2

- BSpline Demo
- Arbitrary number of control points / segments
- Do nothing till 4 control points (see demo)
- Number of segments = \# cpts - 3
- Segment A will have control pts A,A+1,A+2,A+3
- Evaluate Bspline for each segment using 4 control points (at some number of locations, connect lines)
" Use either deCasteljau algorithm (like Bezier) or explicit form [matrix formula on previous slide]
- Questions?

deCasteljau: Cubic B-Splines

- Easy to generalize using polar-form labels
- Impossible remember
 without

