
1

Foundations of Computer Graphics Foundations of Computer Graphics
(Spring 2012)(Spring 2012)

CS 184, Lecture 15: Ray Tracing

http://inst.eecs.berkeley.edu/~cs184

Effects needed for RealismEffects needed for Realism

 (Soft) Shadows

 Reflections (Mirrors and Glossy)

 Transparency (Water, Glass)

 Interreflections (Color Bleeding)

 Complex Illumination (Natural, Area Light)

 Realistic Materials (Velvet, Paints, Glass)

 And many more

Image courtesy Paul Heckbert 1983

Ray TracingRay Tracing

 Different Approach to Image Synthesis as
compared to Hardware pipeline (OpenGL)

 Pixel by Pixel instead of Object by Object

 Easy to compute shadows/transparency/etc

OutlineOutline

 History

 Basic Ray Casting (instead of rasterization)
 Comparison to hardware scan conversion

 Shadows / Reflections (core algorithm)

 Ray-Surface Intersection

 Optimizations

 Current Research

Chapter 4 in text

Ray Tracing: HistoryRay Tracing: History

 Appel 68

 Whitted 80 [recursive ray tracing]
 Landmark in computer graphics

 Lots of work on various geometric primitives

 Lots of work on accelerations

 Current Research
 Real-Time raytracing (historically, slow technique)
 Ray tracing architecture

2

Ray Tracing HistoryRay Tracing History Ray Tracing HistoryRay Tracing History

Outline in CodeOutline in Code
Image Raytrace (Camera cam, Scene scene, int width, int height)

{

Image image = new Image (width, height) ;

for (int i = 0 ; i < height ; i++)

for (int j = 0 ; j < width ; j++) {

Ray ray = RayThruPixel (cam, i, j) ;

Intersection hit = Intersect (ray, scene) ;

image[i][j] = FindColor (hit) ;

}

return image ;

} // Corresponds to ray generation, intersection, shading in 4.1

OutlineOutline

 History

 Basic Ray Casting (instead of rasterization)
 Comparison to hardware scan conversion

 Shadows / Reflections (core algorithm)

 Ray-Surface Intersection

 Optimizations

 Current Research

Ray CastingRay Casting

Produce same images as with OpenGL
 Visibility per pixel instead of Z-buffer
 Find nearest object by shooting rays into scene
 Shade it as in standard OpenGL

Ray Casting

Virtual Viewpoint

Virtual Screen Objects

Ray misses all objects: Pixel colored blackRay intersects object: shade using color, lights, materialsMultiple intersections: Use closest one (as does OpenGL)

3

Comparison to hardware scanComparison to hardware scan--lineline

 Per-pixel evaluation, per-pixel rays (not scan-convert
each object). On face of it, costly

 But good for walkthroughs of extremely large models
(amortize preprocessing, low complexity)

 More complex shading, lighting effects possible

OutlineOutline

 History

 Basic Ray Casting (instead of rasterization)
 Comparison to hardware scan conversion

 Shadows / Reflections (core algorithm)

 Ray-Surface Intersection

 Optimizations

 Current Research

Chapters 4.7, 4.8

Shadows

Virtual Viewpoint

Virtual Screen Objects

Light Source

Shadow ray to light is unblocked: object visibleShadow ray to light is blocked: object in shadow

Shadows: Numerical Issues
• Numerical inaccuracy may cause intersection to be

below surface (effect exaggerated in figure)

• Causing surface to incorrectly shadow itself

• Move a little towards light before shooting shadow ray

Mirror Reflections/Refractions

Virtual Viewpoint

Virtual Screen Objects
Generate reflected ray in mirror direction,
Get reflections and refractions of objects

Recursive Ray TracingRecursive Ray Tracing

For each pixel
 Trace Primary Eye Ray, find intersection

 Trace Secondary Shadow Ray(s) to all light(s)
 Color = Visible ? Illumination Model : 0 ;

 Trace Reflected Ray
 Color += reflectivity * Color of reflected ray

4

Problems with RecursionProblems with Recursion

 Reflection rays may be traced forever

 Generally, set maximum recursion depth

 Same for transmitted rays (take refraction into
account)

Turner Whitted 1980

Effects needed for Realism

• (Soft) Shadows

• Reflections (Mirrors and Glossy)

• Transparency (Water, Glass)

• Interreflections (Color Bleeding)

• Complex Illumination (Natural, Area Light)

• Realistic Materials (Velvet, Paints, Glass)

Discussed in this lecture
Not discussed but possible with distribution ray tracing (13)
Hard (but not impossible) with ray tracing; radiosity methods

OutlineOutline

 History

 Basic Ray Casting (instead of rasterization)
 Comparison to hardware scan conversion

 Shadows / Reflections (core algorithm)

 Ray-Surface Intersection

 Optimizations

 Current Research

Ray/Object IntersectionsRay/Object Intersections

 Heart of Ray Tracer
 One of the main initial research areas
 Optimized routines for wide variety of primitives

 Various types of info
 Shadow rays: Intersection/No Intersection
 Primary rays: Point of intersection, material, normals
 Texture coordinates

 Work out examples
 Triangle, sphere, polygon, general implicit surface

RayRay--Sphere IntersectionSphere Intersection

0 1

2() () 0

ray P P Pt

sphere P C P C r

  

    

  

  


C

P0

5

RayRay--Sphere IntersectionSphere Intersection

0 1

2() () 0

ray P P Pt

sphere P C P C r

  

    

  

  


Substitute

0 1

2
0 1 0 1() () 0

ray P P Pt

sphere P Pt C P Pt C r

  

      

  

    


Simplify

2 2
1 1 1 0 0 0() 2 () () () 0t P P t P P C P C P C r      

       
  

RayRay--Sphere IntersectionSphere Intersection
2 2

1 1 1 0 0 0() 2 () () () 0t P P t P P C P C P C r      
       

  
Solve quadratic equations for t

 2 real positive roots: pick smaller root

 Both roots same: tangent to sphere

 One positive, one negative root: ray
origin inside sphere (pick + root)

 Complex roots: no intersection (check
discriminant of equation first)

RayRay--Sphere IntersectionSphere Intersection

 Intersection point:

 Normal (for sphere, this is same as coordinates
in sphere frame of reference, useful other tasks)

0 1ray P P Pt  
  

P C
normal

P C









RayRay--Triangle IntersectionTriangle Intersection

 One approach: Ray-Plane intersection, then
check if inside triangle

 Plane equation:
A

B

C

() ()

() ()

C A B A
n

C A B A

  


  

0plane P n A n  
  
 

RayRay--Triangle IntersectionTriangle Intersection

 One approach: Ray-Plane intersection, then
check if inside triangle

 Plane equation:

 Combine with ray equation:

A
B

C

() ()

() ()

C A B A
n

C A B A

  


  

0plane P n A n  
  
 

0 1

0 1()

ray P P Pt

P Pt n A n

  

 

  

   
 

0

1

A n P n
t

P n




  
  


Ray inside TriangleRay inside Triangle

 Once intersect with plane, still need to find if in
triangle

 Many possibilities for triangles, general polygons
(point in polygon tests)

 We find parametrically [barycentric coordinates]. Also
useful for other applications (texture mapping)

A
B

C

P
α β

γ

0, 0, 0

1

P A B C  
  
  

  
  
  

6

Ray inside TriangleRay inside Triangle

A
B

C

P
α β

γ

0, 0, 0

1

P A B C  
  
  

  
  
  

() ()P A B A C A     

0 1 , 0 1

1

 
 
   
 

Other primitivesOther primitives

 Much early work in ray tracing focused on ray-primitive
intersection tests

 Cones, cylinders, ellipsoids

 Boxes (especially useful for bounding boxes)

 General planar polygons

 Many more

 Many references. For example, chapter in Glassner
introduction to ray tracing (see me if interested)

RayRay--Tracing Transformed ObjectsTracing Transformed Objects

We have an optimized ray-sphere test
 But we want to ray trace an ellipsoid…

Solution: Ellipsoid transforms sphere
 Apply inverse transform to ray, use ray-sphere
 Allows for instancing (traffic jam of cars)

Mathematical details worked out in class

13.2 in text

Transformed ObjectsTransformed Objects

 Consider a general 4x4 transform M
 Will need to implement matrix stacks like in OpenGL

 Apply inverse transform M-1 to ray
 Locations stored and transform in homogeneous

coordinates
 Vectors (ray directions) have homogeneous coordinate

set to 0 [so there is no action because of translations]

 Do standard ray-surface intersection as modified

 Transform intersection back to actual coordinates
 Intersection point p transforms as Mp
 Distance to intersection if used may need recalculation
 Normals n transform as M-tn. Do all this before lighting

OutlineOutline

 History

 Basic Ray Casting (instead of rasterization)
 Comparison to hardware scan conversion

 Shadows / Reflections (core algorithm)

 Ray-Surface Intersection

 Optimizations

 Current Research

AccelerationAcceleration

Testing each object for each ray is slow
 Fewer Rays

Adaptive sampling, depth control
 Generalized Rays

Beam tracing, cone tracing, pencil tracing etc.
 Faster Intersections

 Optimized Ray-Object Intersections
 Fewer Intersections

We just discuss some approaches at high level; chapter 13 briefly covers

7

Acceleration StructuresAcceleration Structures

Bounding boxes (possibly hierarchical)
If no intersection bounding box, needn’t check objects

Bounding Box

Ray

Spatial Hierarchies (Oct-trees, kd trees, BSP trees)

Acceleration Structures: GridsAcceleration Structures: Grids

Acceleration and Regular GridsAcceleration and Regular Grids

 Simplest acceleration, for example 5x5x5 grid

 For each grid cell, store overlapping triangles

 March ray along grid (need to be careful with
this), test against each triangle in grid cell

 More sophisticated: kd-tree, oct-tree bsp-tree

 Or use (hierarchical) bounding boxes

 Try to implement some acceleration in HW 5

OutlineOutline

 History

 Basic Ray Casting (instead of rasterization)
 Comparison to hardware scan conversion

 Shadows / Reflections (core algorithm)

 Ray-Surface Intersection

 Optimizations

 Current Research

Interactive RaytracingInteractive Raytracing

 Ray tracing historically slow

 Now viable alternative for complex scenes
 Key is sublinear complexity with acceleration;

need not process all triangles in scene

 Allows many effects hard in hardware

 OpenRT project real-time ray tracing
(http://www.openrt.de)

 NVIDIA OptiX ray-tracing API like OpenGL

8

Raytracing on Graphics HardwareRaytracing on Graphics Hardware

 Modern Programmable Hardware general
streaming architecture

 Can map various elements of ray tracing

 Kernels like eye rays, intersect etc.

 In vertex or fragment programs

 Convergence between hardware, ray tracing

[Purcell et al. 2002, 2003]

http://graphics.stanford.edu/papers/photongfx

