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Foundations of Computer Graphics 
(Spring 2012) 

CS 184, Lectures 19:  Sampling and Reconstruction  

 http://inst.eecs.berkeley.edu/~cs184 

Acknowledgements: Thomas Funkhouser and Pat Hanrahan 

Outline 

  Basic ideas of sampling, reconstruction, aliasing 

  Signal processing and Fourier analysis 

  Implementation of digital filters 

  Section 14.10 of FvDFH (you really should read) 

  Post-spring break lectures more advanced topics 
  No programming assignment  
  But can be tested (at high level) in final 

Some slides courtesy Tom Funkhouser 

HW 3 Demos and Return Midterm Sampling and Reconstruction 
  An image is a 2D array of samples 

  Discrete samples from real-world continuous signal 

Sampling and Reconstruction (Spatial) Aliasing 
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(Spatial) Aliasing 

  Jaggies probably biggest aliasing problem 

Sampling and Aliasing 

  Artifacts due to undersampling or poor reconstruction 

  Formally, high frequencies masquerading as low 

  E.g. high frequency line as low freq jaggies 

Image Processing pipeline Outline 

  Basic ideas of sampling, reconstruction, aliasing 

  Signal processing and Fourier analysis 

  Implementation of digital filters 

  Section 14.10 of FvDFH 

Motivation 

  Formal analysis of sampling and reconstruction 

  Important theory (signal-processing) for graphics 

  Also relevant in rendering, modeling, animation 

Ideas 

  Signal (function of time generally, here of space) 

  Continuous: defined at all points; discrete: on a grid 

  High frequency: rapid variation; Low Freq: slow 
variation 

  Images are converting continuous to discrete.  Do this 
sampling as best as possible. 

  Signal processing theory tells us how best to do this 

  Based on concept of frequency domain Fourier analysis 
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Sampling Theory 
Analysis in the frequency (not spatial) domain 

  Sum of sine waves, with possibly different offsets (phase) 
  Each wave different frequency, amplitude 

Fourier Transform 

  Tool for converting from spatial to frequency domain 

  Or vice versa 

  One of most important mathematical ideas 

  Computational algorithm: Fast Fourier Transform 
  One of 10 great algorithms scientific computing 
  Makes Fourier processing possible (images etc.) 
  Not discussed here, but look up if interested 

Fourier Transform 

  Simple case, function sum of sines, cosines 

  Continuous infinite case  
  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu

Fourier Transform 

  Simple case, function sum of sines, cosines 

  Discrete case  
  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

  

 F(u) = f (x) cos 2πux / N( )− i sin 2πux / n( )⎡⎣ ⎤⎦
x=0

x=N−1

∑ , 0 ≤ u ≤ N −1

f (x) = 1
N

F(u) cos 2πux / N( ) + i sin 2πux / n( )⎡⎣ ⎤⎦
u=0

u=N−1

∑ , 0 ≤ x ≤ N −1

 

Fourier Transform: Examples 1 

  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

Single sine curve    
(+constant DC term) 
 

 

Fourier Transform Examples 2 

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Common examples 

  

δ (x − x0) e−2π iux0

1 δ (u)

e−ax2 π
ae−π 2u2 /a

  f (x) F(u)
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Fourier Transform Properties 

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Common properties 

  Linearity:  

  Derivatives: [integrate by parts] 

  2D Fourier Transform 

  Convolution (next) 

  

F(f '(x)) = f '(x)e−2π iux

−∞

∞

∫ dx

= 2π iuF(u)

  F(af (x)+ bg(x)) = aF(f (x))+ bF(g(x))

  

Forward Transform:      F(u,v) =
−∞

∞

∫ f (x,y)e−2π iux

−∞

∞

∫ e−2π ivydxdy

Inverse Transform:         f (x,y) =
−∞

∞

∫ −∞

+∞

∫ F(u,v)e2π iuxe2π ivydudv

Sampling Theorem, Bandlimiting 
  A signal can be reconstructed from its samples, 

if the original signal has no frequencies above 
half the sampling frequency – Shannon 

  The minimum sampling rate for a bandlimited 
function is called the Nyquist rate 

Sampling Theorem, Bandlimiting 

  A signal can be reconstructed from its samples, if 
the original signal has no frequencies above half 
the sampling frequency – Shannon 

  The minimum sampling rate for a bandlimited 
function is called the Nyquist rate 

  A signal is bandlimited if the highest frequency is 
bounded.  This frequency is called the bandwidth 

  In general, when we transform, we want to filter to 
bandlimit before sampling, to avoid aliasing 

Antialiasing 

  Sample at higher rate 
  Not always possible  
  Real world: lines have infinitely high frequencies, 

can’t sample at high enough resolution 

  Prefilter to bandlimit signal 
  Low-pass filtering (blurring) 
  Trade blurriness for aliasing 

Ideal bandlimiting filter 

  Formal derivation is homework exercise 

Outline 

  Basic ideas of sampling, reconstruction, aliasing 

  Signal processing and Fourier analysis 
  Convolution 

  Implementation of digital filters 

  Section 14.10 of FvDFH 
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Convolution 1 Convolution 2 

Convolution 3 Convolution 4 

Convolution 5 Convolution in Frequency Domain 

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Convolution (f is signal ; g is filter [or vice versa]) 

  Fourier analysis (frequency domain 
multiplication) 

  

h(y) = f (x)g(y − x)dx =
−∞

+∞

∫ g(x)f (y − x)dx
−∞

+∞

∫
h = f * g or f ⊗ g

  H(u) = F(u)G(u)
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Practical Image Processing 
  Discrete convolution (in spatial domain) with filters for 

various digital signal processing operations 

  Easy to analyze, understand effects in frequency domain 
  E.g. blurring or bandlimiting by convolving with low pass filter  

Outline 

  Basic ideas of sampling, reconstruction, aliasing 

  Signal processing and Fourier analysis 

  Implementation of digital filters 

  Section 14.10 of FvDFH 

Discrete Convolution 
  Previously: Convolution as mult in freq domain 

  But need to convert digital image to and from to use that 
  Useful in some cases, but not for small filters 

  Previously seen: Sinc as ideal low-pass filter 
  But has infinite spatial extent, exhibits spatial ringing 
  In general, use frequency ideas, but consider 

implementation issues as well 

  Instead, use simple discrete convolution filters e.g. 
  Pixel gets sum of nearby pixels weighted by filter/mask 

2 0 -7 

5 4 9 

1 -6 -2 

Implementing Discrete Convolution 
  Fill in each pixel new image convolving with old 

  Not really possible to implement it in place 

  More efficient for smaller kernels/filters f 

  Normalization 
  If you don’t want overall brightness change, entries of filter 

must sum to 1.  You may need to normalize by dividing 

  Integer arithmetic 
  Simpler and more efficient 
  In general, normalization outside, round to nearest int 

 

  
Inew (a,b) = f (x − a,y − b)Iold (x,y)

y=b−width

b+width

∑
x=a−width

a+width

∑

Outline 

  Implementation of digital filters 
  Discrete convolution in spatial domain 
  Basic image-processing operations 
  Antialiased shift and resize 

Basic Image Processing 

  Blur 

  Sharpen 

  Edge Detection 

All implemented using convolution with different filters 
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Blurring 

  Used for softening appearance 

  Convolve with gaussian filter 
  Same as mult. by gaussian in freq. domain, so 

reduces high-frequency content 
  Greater the spatial width, smaller the Fourier width, 

more blurring occurs and vice versa  

  How to find blurring filter?  

Blurring 

Blurring Blurring 

Blurring Blurring 
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Blurring Filter 

  In general, for symmetry f(u,v) = f(u) f(v) 
  You might want to have some fun with asymmetric filters 

  We will use a Gaussian blur  
  Blur width sigma depends on kernel size n (3,5,7,11,13,19) 

Spatial Frequency 

  
f (u) = 1

2πσ
exp

−u2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥ σ = floor(n / 2) / 2

Discrete Filtering, Normalization 

  Gaussian is infinite 
  In practice, finite filter of size n (much less energy beyond 2 

sigma or 3 sigma).   
  Must renormalize so entries add up to 1  

  Simple practical approach 
  Take smallest values as 1 to scale others, round to integers 
  Normalize.  E.g. for n = 3, sigma = ½  

  
f (u,v) = 1

2πσ 2 exp − u2 +v 2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥ =

2
π

exp −2 u2 +v 2( )⎡
⎣

⎤
⎦

 

≈
0.012 0.09 0.012
0.09 0.64 0.09
0.012 0.09 0.012

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≈

1
86

1 7 1
7 54 7
1 7 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Basic Image Processing 

  Blur 

  Sharpen 

  Edge Detection 

All implemented using convolution with different filters 

Sharpening Filter 

  Unlike blur, want to accentuate high frequencies 

  Take differences with nearby pixels (rather than avg) 

  

f (x,y) = 1
7

−1 −2 −1
−2 19 −2
−1 −2 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Blurring Blurring 
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Blurring Basic Image Processing 

  Blur 

  Sharpen 

  Edge Detection 

All implemented using convolution with different filters 

Edge Detection 

  Complicated topic: subject of many PhD theses 

  Here, we present one approach (Sobel edge detector) 

  Step 1: Convolution with gradient (Sobel) filter 
  Edges occur where image gradients are large 
  Separately for horizontal and vertical directions 

  Step 2: Magnitude of gradient 
  Norm of horizontal and vertical gradients 

  Step 3: Thresholding 
  Threshold to detect edges 

Edge Detection 

Edge Detection Edge Detection 
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Details 

  Step 1: Convolution with gradient (Sobel) filter 
  Edges occur where image gradients are large 
  Separately for horizontal and vertical directions 

  Step 2: Magnitude of gradient 
  Norm of horizontal and vertical gradients 

  Step 3: Thresholding 

  

fhoriz(x,y) =
−1 0 1
−2 0 2
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ fvert (x,y) =

1 2 1
0 0 0
−1 −2 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  
G = Gx

2
+ Gy

2

Outline 

  Implementation of digital filters 
  Discrete convolution in spatial domain 
  Basic image-processing operations 
  Antialiased shift and resize  

Antialiased Shift 

Shift image based on (fractional) sx and sy  
  Check for integers, treat separately 
  Otherwise convolve/resample with kernel/filter h:  

 u = x − sx v = y − sy

  
I(x,y) = h(u '− u,v '−v)I(u ',v ')

u ',v '
∑

Antialiased Scale Magnification 

Magnify image (scale s or  γ > 1)  
  Interpolate between orig. samples to evaluate frac vals 
  Do so by convolving/resampling with kernel/filter:  
  Treat the two image dimensions independently (diff scales) 

 
u = x

γ

  
I(x) = h(u '− u)I(u ')

u '=u/γ −width

u/γ +width

∑

Antialiased Scale Minification 

checkerboard.bmp 300x300: point sample checkerboard.bmp 300x300: Mitchell 

Antialiased Scale Minification 
Minify (reduce size of) image 

  Similar in some ways to mipmapping for texture maps 
  We use fat pixels of size 1/γ, with new size γ*orig size 

(γ is scale factor < 1).   
  Each fat pixel must integrate over corresponding 

region in original image using the filter kernel. 

 
u = x

γ
  
I(x) = h(γ (u '− u))I(u ')

u '=u−width/γ

u+width/γ

∑ = h(γ u '− x)I(u ')
u '=u−width/γ

u+width/γ

∑


