Foundations of Computer Graphics (Spring 2012)

CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184

Acknowledgements: Thomas Funkhouser and Pat Hanrahan

Outline

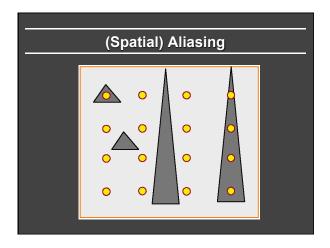
- Basic ideas of sampling, reconstruction, aliasing
- Signal processing and Fourier analysis
- Implementation of digital filters
- Section 14.10 of FvDFH (you really should read)
- Post-spring break lectures more advanced topics
 - No programming assignment
 - But can be tested (at high level) in final

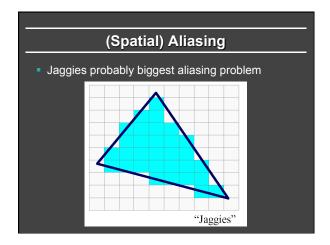
Some slides courtesy Tom Funkhouser

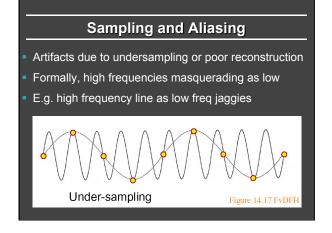
HW 3 Demos and Return Midterm

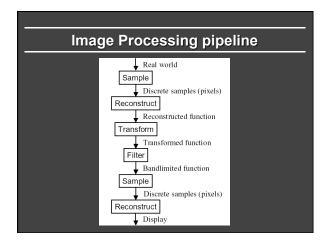
Sampling and Reconstruction An image is a 2D array of samples Discrete samples from real-world continuous signal Sampling Reconstruction

Sampling and Reconstruction Original Styrial Sampling Sampling Americal Processary and Process









Outline

- Basic ideas of sampling, reconstruction, aliasing
- Signal processing and Fourier analysis
- Implementation of digital filters
- Section 14.10 of FvDFH

Motivation

- Formal analysis of sampling and reconstruction
- Important theory (signal-processing) for graphics
- Also relevant in rendering, modeling, animation

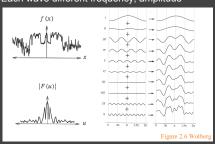
Ideas

- Signal (function of time generally, here of space)
- Continuous: defined at all points; discrete: on a grid
- High frequency: rapid variation; Low Freq: slow variation
- Images are converting continuous to discrete. Do this sampling as best as possible.
- Signal processing theory tells us how best to do this
- Based on concept of frequency domain Fourier analysis

Sampling Theory

Analysis in the frequency (not spatial) domain

- Sum of sine waves, with possibly different offsets (phase)
- Each wave different frequency, amplitude



Fourier Transform

- Tool for converting from spatial to frequency domain
- Or vice versa
- One of most important mathematical ideas
- Computational algorithm: Fast Fourier Transform
 - One of 10 great algorithms scientific computing
 - Makes Fourier processing possible (images etc.)
 - Not discussed here, but look up if interested

Fourier Transform

Simple case, function sum of sines, cosines

$$f(x) = \sum_{u = -\infty}^{+\infty} F(u)e^{2\pi i u x}$$
$$F(u) = \int_{0}^{2\pi} f(x)e^{-2\pi i u x} dx$$

Continuous infinite case

Forward Transform:
$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i ux} dx$$

Inverse Transform:
$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{2\pi i u x} du$$

Fourier Transform

Simple case, function sum of sines, cosines

$$f(x) = \sum_{u = -\infty}^{+\infty} F(u)e^{2\pi i u x}$$
$$F(u) = \int_{0}^{2\pi} f(x)e^{-2\pi i u x} dx$$

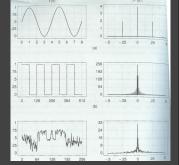
Discrete case

$$F(u) = \sum_{x=0}^{x=N-1} f(x) \Big[\cos \Big(2\pi u x / N \Big) - i \sin \Big(2\pi u x / n \Big) \Big], \qquad 0 \le u \le N-1$$

$$f(x) = \frac{1}{N} \sum_{n=0}^{u=N-1} F(u) \Big[\cos \Big(2\pi u x / N \Big) + i \sin \Big(2\pi u x / n \Big) \Big], \quad 0 \le x \le N-1$$

Fourier Transform: Examples 1

Single sine curve (+constant DC term)



Forward Transform:
$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i ux} dx$$

Inverse Transform:
$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{2\pi i u x} du$$

Common examples

$$f(x) \qquad F(u)$$

$$\delta(x-x_0) \qquad e^{-2\pi i u x_0}$$

$$1 \qquad \delta(u)$$

$$e^{-ax^2} \qquad \sqrt{\frac{\pi}{a}} e^{-\pi^2 u^2/a}$$

Fourier Transform Properties

Forward Transform:
$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$$

Inverse Transform:
$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{2\pi i u x} du$$

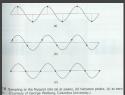
- Common properties
 - Linearity: F(af(x)+bg(x))=aF(f(x))+bF(g(x))
 - Derivatives: [integrate by parts] $F(f'(x)) = \int_{0}^{\infty} f'(x)e^{-2\pi i u x} dx$
 - $=2\pi iuF(u)$ 2D Fourier Transform

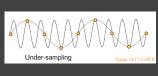
Forward Transform:
$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i u x} e^{-2\pi i v y} dx dy$$

Convolution (next)_{Inverse Transform} $f(x,y) = \int_{-\infty}^{+\infty} F(u,v)e^{2\pi i ux}e^{2\pi i ux}$

Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate





Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate
- A signal is bandlimited if the highest frequency is bounded. This frequency is called the bandwidth
- In general, when we transform, we want to filter to bandlimit before sampling, to avoid aliasing

Antialiasing

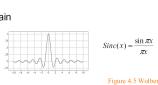
- Sample at higher rate

 - Not always possible
 Real world: lines have infinitely high frequencies, can't sample at high enough resolution
- Prefilter to bandlimit signal
 - Low-pass filtering (blurring)
 - Trade blurriness for aliasing

Ideal bandlimiting filter

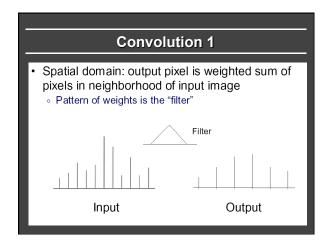
Formal derivation is homework exercise

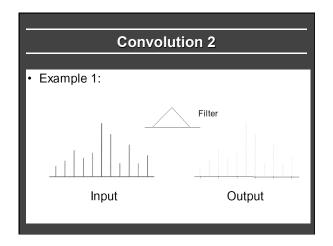
Spatial domain

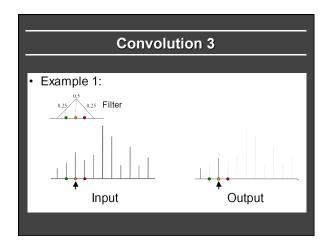


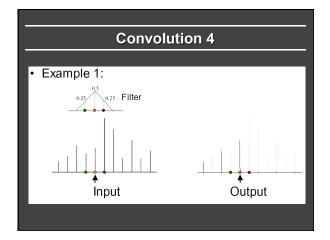
Outline

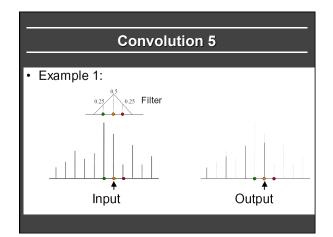
- Basic ideas of sampling, reconstruction, aliasing
- Signal processing and Fourier analysis Convolution
- Implementation of digital filters
- Section 14.10 of FvDFH

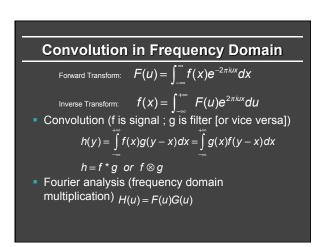






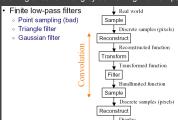






Practical Image Processing

- Discrete convolution (in spatial domain) with filters for various digital signal processing operations
- Easy to analyze, understand effects in frequency domain E.g. blurring or bandlimiting by convolving with low pass filter



Outline

- Basic ideas of sampling, reconstruction, aliasing
- Signal processing and Fourier analysis
- Implementation of digital filters
- Section 14.10 of FvDFH

Discrete Convolution

- Previously: Convolution as mult in freq domain
 - But need to convert digital image to and from to use that
 - Useful in some cases, but not for small filters
- Previously seen: Sinc as ideal low-pass filter
 - But has infinite spatial extent, exhibits spatial ringing
 - In general, use frequency ideas, but consider implementation issues as well
- Instead, use simple discrete convolution filters e.g.
 - Pixel gets sum of nearby pixels weighted by filter/mask

2	0	-7
5	4	9
1	-6	-2

Implementing Discrete Convolution

- Fill in each pixel new image convolving with old
 - Not really possible to implement it in place

$$I_{\text{new}}(a,b) = \sum_{x=a, \text{ width } }^{a+\text{width}} \sum_{y=b, \text{ width } }^{b+\text{width}} f(x-a,y-b)I_{\text{old}}(x,y)$$

- More efficient for smaller kernels/filters f
- Normalization
 - If you don't want overall brightness change, entries of filter must sum to 1. You may need to normalize by dividing
- Integer arithmetic
 - Simpler and more efficient
 - In general, normalization outside, round to nearest int

Outline

- Implementation of digital filters
 - Discrete convolution in spatial domain
 - Basic image-processing operations
 - Antialiased shift and resize

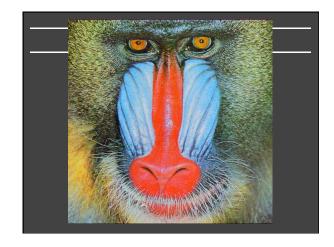
Basic Image Processing

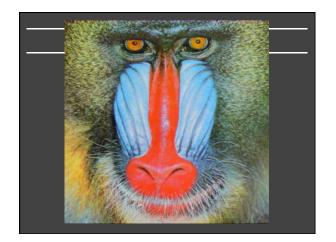
- Blur
- Sharpen
- Edge Detection

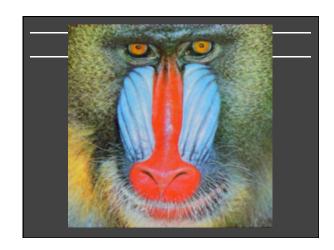
All implemented using convolution with different filters

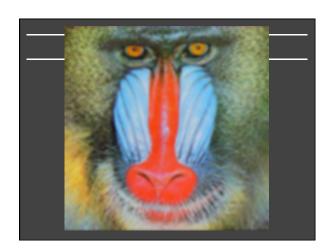
Blurring

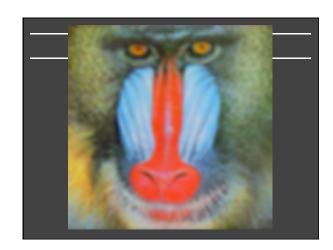
- Used for softening appearance
- Convolve with gaussian filter
 Same as mult. by gaussian in freq. domain, so reduces high-frequency content
 Greater the spatial width, smaller the Fourier width, more blurring occurs and vice versa
- How to find blurring filter?





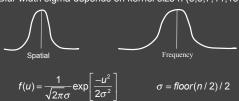






Blurring Filter

- In general, for symmetry f(u,v) = f(u) f(v)
 You might want to have some fun with asymmetric filters
- We will use a Gaussian blur
 - Blur width sigma depends on kernel size n (3,5,7,11,13,19)



Basic Image Processing

- Blur
- Sharpen
- Edge Detection

All implemented using convolution with different filters

Sharpening Filter

Discrete Filtering, Normalization

In practice, finite filter of size n (much less energy beyond 2

Simple practical approach

Take smallest values as 1 to scale others, round to integers

Gaussian is infinite

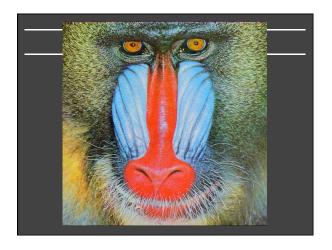
sigma or 3 sigma).

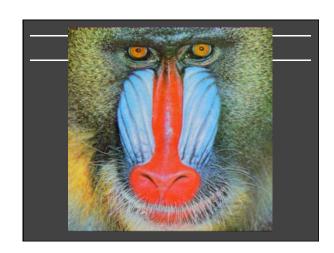
Must renormalize so entries add up to 1

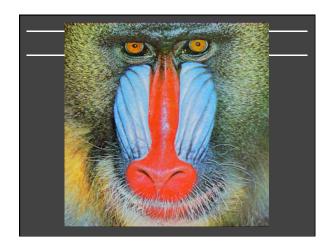
Normalize. E.g. for n = 3, sigma = ½

- Unlike blur, want to accentuate high frequencies
- Take differences with nearby pixels (rather than avg)

$$f(x,y) = \frac{1}{7} \begin{pmatrix} -1 & -2 & -1 \\ -2 & 19 & -2 \\ -1 & -2 & -1 \end{pmatrix}$$







Basic Image Processing

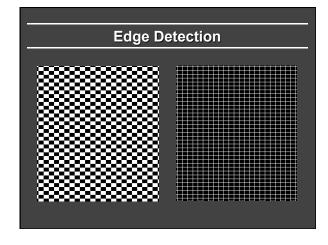
- Blur
- Sharpen
- Edge Detection

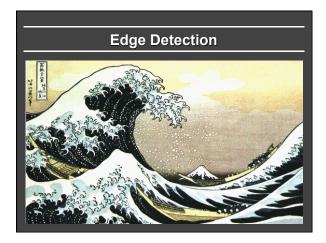
All implemented using convolution with different filters

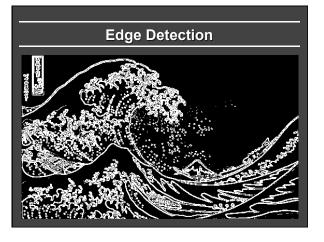
Edge Detection

- Complicated topic: subject of many PhD theses
- Here, we present one approach (Sobel edge detector)
- Step 1: Convolution with gradient (Sobel) filter
 - Edges occur where image gradients are large
 Separately for horizontal and vertical directions
- Step 2: Magnitude of gradient
 - Norm of horizontal and vertical gradients
- Step 3: Thresholding

 Threshold to detect edges







Details

- Step 1: Convolution with gradient (Sobel) filter
 - Edges occur where image gradients are large
 Separately for horizontal and vertical directions

$$f_{horiz}(x,y) = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \quad f_{vert}(x,y) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$

- Step 2: Magnitude of gradient
 Norm of horizontal and vertical gradients

$$G = \sqrt{\left|G_{x}\right|^{2} + \left|G_{y}\right|^{2}}$$

Step 3: Thresholding

Outline

- Implementation of digital filters
 - Discrete convolution in spatial domain
 - Basic image-processing operations
 - Antialiased shift and resize

Antialiased Shift

Shift image based on (fractional) s_x and s_y

- Check for integers, treat separately
- Otherwise convolve/resample with kernel/filter h:

$$u = x - s_x$$
 $v = y - s_y$

$$I(x,y) = \sum_{u',v'} h(u'-u,v'-v)I(u',v')$$

Antialiased Scale Magnification

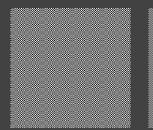
Magnify image (scale s or $\gamma > 1$)

- Interpolate between orig. samples to evaluate frac vals
- Do so by convolving/resampling with kernel/filter: Treat the two image dimensions independently (diff scales)

$$u = \frac{x}{\gamma}$$

$$I(x) = \sum_{u'=u/\gamma - \text{width}}^{u/\gamma + \text{width}} h(u'-u)I(u')$$

Antialiased Scale Minification



checkerboard.bmp 300x300: point sample checkerboard.bmp 300x300: Mitchell

Antialiased Scale Minification

Minify (reduce size of) image

- Similar in some ways to mipmapping for texture maps
 We use fat pixels of size 1/γ, with new size γ*orig size (γ is scale factor < 1).
- Each fat pixel must integrate over corresponding region in original image using the filter kernel.

$$u = \frac{x}{\gamma} \quad I(x) = \sum_{u'=u-\text{width}/\gamma}^{u+\text{width}/\gamma} h(\gamma(u'-u))I(u') = \sum_{u'=u-\text{width}/\gamma}^{u+\text{width}/\gamma} h(\gamma u'-x)I(u')$$