
1

Foundations of Computer Graphics
(Spring 2012)

CS 184, Lectures 19: Sampling and Reconstruction

 http://inst.eecs.berkeley.edu/~cs184

Acknowledgements: Thomas Funkhouser and Pat Hanrahan

Outline

  Basic ideas of sampling, reconstruction, aliasing

  Signal processing and Fourier analysis

  Implementation of digital filters

  Section 14.10 of FvDFH (you really should read)

  Post-spring break lectures more advanced topics
  No programming assignment
  But can be tested (at high level) in final

Some slides courtesy Tom Funkhouser

HW 3 Demos and Return Midterm Sampling and Reconstruction
  An image is a 2D array of samples

  Discrete samples from real-world continuous signal

Sampling and Reconstruction (Spatial) Aliasing

2

(Spatial) Aliasing

  Jaggies probably biggest aliasing problem

Sampling and Aliasing

  Artifacts due to undersampling or poor reconstruction

  Formally, high frequencies masquerading as low

  E.g. high frequency line as low freq jaggies

Image Processing pipeline Outline

  Basic ideas of sampling, reconstruction, aliasing

  Signal processing and Fourier analysis

  Implementation of digital filters

  Section 14.10 of FvDFH

Motivation

  Formal analysis of sampling and reconstruction

  Important theory (signal-processing) for graphics

  Also relevant in rendering, modeling, animation

Ideas

  Signal (function of time generally, here of space)

  Continuous: defined at all points; discrete: on a grid

  High frequency: rapid variation; Low Freq: slow
variation

  Images are converting continuous to discrete. Do this
sampling as best as possible.

  Signal processing theory tells us how best to do this

  Based on concept of frequency domain Fourier analysis

3

Sampling Theory
Analysis in the frequency (not spatial) domain

  Sum of sine waves, with possibly different offsets (phase)
  Each wave different frequency, amplitude

Fourier Transform

  Tool for converting from spatial to frequency domain

  Or vice versa

  One of most important mathematical ideas

  Computational algorithm: Fast Fourier Transform
  One of 10 great algorithms scientific computing
  Makes Fourier processing possible (images etc.)
  Not discussed here, but look up if interested

Fourier Transform

  Simple case, function sum of sines, cosines

  Continuous infinite case

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

Forward Transform: F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform: f (x) =
−∞

+∞

∫ F(u)e2π iuxdu

Fourier Transform

  Simple case, function sum of sines, cosines

  Discrete case

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

 F(u) = f (x) cos 2πux / N()− i sin 2πux / n()⎡⎣ ⎤⎦
x=0

x=N−1

∑ , 0 ≤ u ≤ N −1

f (x) = 1
N

F(u) cos 2πux / N() + i sin 2πux / n()⎡⎣ ⎤⎦
u=0

u=N−1

∑ , 0 ≤ x ≤ N −1

Fourier Transform: Examples 1

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

Single sine curve
(+constant DC term)

Fourier Transform Examples 2

Forward Transform: F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform: f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Common examples

δ (x − x0) e−2π iux0

1 δ (u)

e−ax2 π
ae−π 2u2 /a

 f (x) F(u)

4

Fourier Transform Properties

Forward Transform: F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform: f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Common properties

  Linearity:

  Derivatives: [integrate by parts]

  2D Fourier Transform

  Convolution (next)

F(f '(x)) = f '(x)e−2π iux

−∞

∞

∫ dx

= 2π iuF(u)

 F(af (x)+ bg(x)) = aF(f (x))+ bF(g(x))

Forward Transform: F(u,v) =
−∞

∞

∫ f (x,y)e−2π iux

−∞

∞

∫ e−2π ivydxdy

Inverse Transform: f (x,y) =
−∞

∞

∫ −∞

+∞

∫ F(u,v)e2π iuxe2π ivydudv

Sampling Theorem, Bandlimiting
  A signal can be reconstructed from its samples,

if the original signal has no frequencies above
half the sampling frequency – Shannon

  The minimum sampling rate for a bandlimited
function is called the Nyquist rate

Sampling Theorem, Bandlimiting

  A signal can be reconstructed from its samples, if
the original signal has no frequencies above half
the sampling frequency – Shannon

  The minimum sampling rate for a bandlimited
function is called the Nyquist rate

  A signal is bandlimited if the highest frequency is
bounded. This frequency is called the bandwidth

  In general, when we transform, we want to filter to
bandlimit before sampling, to avoid aliasing

Antialiasing

  Sample at higher rate
  Not always possible
  Real world: lines have infinitely high frequencies,

can’t sample at high enough resolution

  Prefilter to bandlimit signal
  Low-pass filtering (blurring)
  Trade blurriness for aliasing

Ideal bandlimiting filter

  Formal derivation is homework exercise

Outline

  Basic ideas of sampling, reconstruction, aliasing

  Signal processing and Fourier analysis
  Convolution

  Implementation of digital filters

  Section 14.10 of FvDFH

5

Convolution 1 Convolution 2

Convolution 3 Convolution 4

Convolution 5 Convolution in Frequency Domain

Forward Transform: F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform: f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Convolution (f is signal ; g is filter [or vice versa])

  Fourier analysis (frequency domain
multiplication)

h(y) = f (x)g(y − x)dx =
−∞

+∞

∫ g(x)f (y − x)dx
−∞

+∞

∫
h = f * g or f ⊗ g

 H(u) = F(u)G(u)

6

Practical Image Processing
  Discrete convolution (in spatial domain) with filters for

various digital signal processing operations

  Easy to analyze, understand effects in frequency domain
  E.g. blurring or bandlimiting by convolving with low pass filter

Outline

  Basic ideas of sampling, reconstruction, aliasing

  Signal processing and Fourier analysis

  Implementation of digital filters

  Section 14.10 of FvDFH

Discrete Convolution
  Previously: Convolution as mult in freq domain

  But need to convert digital image to and from to use that
  Useful in some cases, but not for small filters

  Previously seen: Sinc as ideal low-pass filter
  But has infinite spatial extent, exhibits spatial ringing
  In general, use frequency ideas, but consider

implementation issues as well

  Instead, use simple discrete convolution filters e.g.
  Pixel gets sum of nearby pixels weighted by filter/mask

2 0 -7

5 4 9

1 -6 -2

Implementing Discrete Convolution
  Fill in each pixel new image convolving with old

  Not really possible to implement it in place

  More efficient for smaller kernels/filters f

  Normalization
  If you don’t want overall brightness change, entries of filter

must sum to 1. You may need to normalize by dividing

  Integer arithmetic
  Simpler and more efficient
  In general, normalization outside, round to nearest int

Inew (a,b) = f (x − a,y − b)Iold (x,y)

y=b−width

b+width

∑
x=a−width

a+width

∑

Outline

  Implementation of digital filters
  Discrete convolution in spatial domain
  Basic image-processing operations
  Antialiased shift and resize

Basic Image Processing

  Blur

  Sharpen

  Edge Detection

All implemented using convolution with different filters

7

Blurring

  Used for softening appearance

  Convolve with gaussian filter
  Same as mult. by gaussian in freq. domain, so

reduces high-frequency content
  Greater the spatial width, smaller the Fourier width,

more blurring occurs and vice versa

  How to find blurring filter?

Blurring

Blurring Blurring

Blurring Blurring

8

Blurring Filter

  In general, for symmetry f(u,v) = f(u) f(v)
  You might want to have some fun with asymmetric filters

  We will use a Gaussian blur
  Blur width sigma depends on kernel size n (3,5,7,11,13,19)

Spatial Frequency

f (u) = 1

2πσ
exp

−u2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥ σ = floor(n / 2) / 2

Discrete Filtering, Normalization

  Gaussian is infinite
  In practice, finite filter of size n (much less energy beyond 2

sigma or 3 sigma).
  Must renormalize so entries add up to 1

  Simple practical approach
  Take smallest values as 1 to scale others, round to integers
  Normalize. E.g. for n = 3, sigma = ½

f (u,v) = 1

2πσ 2 exp − u2 +v 2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥ =

2
π

exp −2 u2 +v 2()⎡
⎣

⎤
⎦

≈
0.012 0.09 0.012
0.09 0.64 0.09
0.012 0.09 0.012

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≈

1
86

1 7 1
7 54 7
1 7 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Basic Image Processing

  Blur

  Sharpen

  Edge Detection

All implemented using convolution with different filters

Sharpening Filter

  Unlike blur, want to accentuate high frequencies

  Take differences with nearby pixels (rather than avg)

f (x,y) = 1
7

−1 −2 −1
−2 19 −2
−1 −2 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Blurring Blurring

9

Blurring Basic Image Processing

  Blur

  Sharpen

  Edge Detection

All implemented using convolution with different filters

Edge Detection

  Complicated topic: subject of many PhD theses

  Here, we present one approach (Sobel edge detector)

  Step 1: Convolution with gradient (Sobel) filter
  Edges occur where image gradients are large
  Separately for horizontal and vertical directions

  Step 2: Magnitude of gradient
  Norm of horizontal and vertical gradients

  Step 3: Thresholding
  Threshold to detect edges

Edge Detection

Edge Detection Edge Detection

10

Details

  Step 1: Convolution with gradient (Sobel) filter
  Edges occur where image gradients are large
  Separately for horizontal and vertical directions

  Step 2: Magnitude of gradient
  Norm of horizontal and vertical gradients

  Step 3: Thresholding

fhoriz(x,y) =
−1 0 1
−2 0 2
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ fvert (x,y) =

1 2 1
0 0 0
−1 −2 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

G = Gx

2
+ Gy

2

Outline

  Implementation of digital filters
  Discrete convolution in spatial domain
  Basic image-processing operations
  Antialiased shift and resize

Antialiased Shift

Shift image based on (fractional) sx and sy
  Check for integers, treat separately
  Otherwise convolve/resample with kernel/filter h:

 u = x − sx v = y − sy

I(x,y) = h(u '− u,v '−v)I(u ',v ')

u ',v '
∑

Antialiased Scale Magnification

Magnify image (scale s or γ > 1)
  Interpolate between orig. samples to evaluate frac vals
  Do so by convolving/resampling with kernel/filter:
  Treat the two image dimensions independently (diff scales)

u = x

γ

I(x) = h(u '− u)I(u ')

u '=u/γ −width

u/γ +width

∑

Antialiased Scale Minification

checkerboard.bmp 300x300: point sample checkerboard.bmp 300x300: Mitchell

Antialiased Scale Minification
Minify (reduce size of) image

  Similar in some ways to mipmapping for texture maps
  We use fat pixels of size 1/γ, with new size γ*orig size

(γ is scale factor < 1).
  Each fat pixel must integrate over corresponding

region in original image using the filter kernel.

u = x

γ

I(x) = h(γ (u '− u))I(u ')

u '=u−width/γ

u+width/γ

∑ = h(γ u '− x)I(u ')
u '=u−width/γ

u+width/γ

∑

