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Foundations of Computer Graphics 
(Spring 2012) 

CS 184, Lectures 19:  Sampling and Reconstruction  

 http://inst.eecs.berkeley.edu/~cs184 

Acknowledgements: Thomas Funkhouser and Pat Hanrahan 

Outline 

  Basic ideas of sampling, reconstruction, aliasing 

  Signal processing and Fourier analysis 

  Implementation of digital filters 

  Section 14.10 of FvDFH (you really should read) 

  Post-spring break lectures more advanced topics 
  No programming assignment  
  But can be tested (at high level) in final 

Some slides courtesy Tom Funkhouser 

HW 3 Demos and Return Midterm Sampling and Reconstruction 
  An image is a 2D array of samples 

  Discrete samples from real-world continuous signal 

Sampling and Reconstruction (Spatial) Aliasing 
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(Spatial) Aliasing 

  Jaggies probably biggest aliasing problem 

Sampling and Aliasing 

  Artifacts due to undersampling or poor reconstruction 

  Formally, high frequencies masquerading as low 

  E.g. high frequency line as low freq jaggies 

Image Processing pipeline Outline 

  Basic ideas of sampling, reconstruction, aliasing 

  Signal processing and Fourier analysis 

  Implementation of digital filters 

  Section 14.10 of FvDFH 

Motivation 

  Formal analysis of sampling and reconstruction 

  Important theory (signal-processing) for graphics 

  Also relevant in rendering, modeling, animation 

Ideas 

  Signal (function of time generally, here of space) 

  Continuous: defined at all points; discrete: on a grid 

  High frequency: rapid variation; Low Freq: slow 
variation 

  Images are converting continuous to discrete.  Do this 
sampling as best as possible. 

  Signal processing theory tells us how best to do this 

  Based on concept of frequency domain Fourier analysis 
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Sampling Theory 
Analysis in the frequency (not spatial) domain 

  Sum of sine waves, with possibly different offsets (phase) 
  Each wave different frequency, amplitude 

Fourier Transform 

  Tool for converting from spatial to frequency domain 

  Or vice versa 

  One of most important mathematical ideas 

  Computational algorithm: Fast Fourier Transform 
  One of 10 great algorithms scientific computing 
  Makes Fourier processing possible (images etc.) 
  Not discussed here, but look up if interested 

Fourier Transform 

  Simple case, function sum of sines, cosines 

  Continuous infinite case  
  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu

Fourier Transform 

  Simple case, function sum of sines, cosines 

  Discrete case  
  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

  

 F(u) = f (x) cos 2πux / N( )− i sin 2πux / n( )⎡⎣ ⎤⎦
x=0

x=N−1

∑ , 0 ≤ u ≤ N −1

f (x) = 1
N

F(u) cos 2πux / N( ) + i sin 2πux / n( )⎡⎣ ⎤⎦
u=0

u=N−1

∑ , 0 ≤ x ≤ N −1

 

Fourier Transform: Examples 1 

  

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

Single sine curve    
(+constant DC term) 
 

 

Fourier Transform Examples 2 

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Common examples 

  

δ (x − x0) e−2π iux0

1 δ (u)

e−ax2 π
ae−π 2u2 /a

  f (x) F(u)
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Fourier Transform Properties 

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Common properties 

  Linearity:  

  Derivatives: [integrate by parts] 

  2D Fourier Transform 

  Convolution (next) 

  

F(f '(x)) = f '(x)e−2π iux

−∞

∞

∫ dx

= 2π iuF(u)

  F(af (x)+ bg(x)) = aF(f (x))+ bF(g(x))

  

Forward Transform:      F(u,v) =
−∞

∞

∫ f (x,y)e−2π iux

−∞

∞

∫ e−2π ivydxdy

Inverse Transform:         f (x,y) =
−∞

∞

∫ −∞

+∞

∫ F(u,v)e2π iuxe2π ivydudv

Sampling Theorem, Bandlimiting 
  A signal can be reconstructed from its samples, 

if the original signal has no frequencies above 
half the sampling frequency – Shannon 

  The minimum sampling rate for a bandlimited 
function is called the Nyquist rate 

Sampling Theorem, Bandlimiting 

  A signal can be reconstructed from its samples, if 
the original signal has no frequencies above half 
the sampling frequency – Shannon 

  The minimum sampling rate for a bandlimited 
function is called the Nyquist rate 

  A signal is bandlimited if the highest frequency is 
bounded.  This frequency is called the bandwidth 

  In general, when we transform, we want to filter to 
bandlimit before sampling, to avoid aliasing 

Antialiasing 

  Sample at higher rate 
  Not always possible  
  Real world: lines have infinitely high frequencies, 

can’t sample at high enough resolution 

  Prefilter to bandlimit signal 
  Low-pass filtering (blurring) 
  Trade blurriness for aliasing 

Ideal bandlimiting filter 

  Formal derivation is homework exercise 

Outline 

  Basic ideas of sampling, reconstruction, aliasing 

  Signal processing and Fourier analysis 
  Convolution 

  Implementation of digital filters 

  Section 14.10 of FvDFH 
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Convolution 1 Convolution 2 

Convolution 3 Convolution 4 

Convolution 5 Convolution in Frequency Domain 

  

Forward Transform:      F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform:         f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Convolution (f is signal ; g is filter [or vice versa]) 

  Fourier analysis (frequency domain 
multiplication) 

  

h(y) = f (x)g(y − x)dx =
−∞

+∞

∫ g(x)f (y − x)dx
−∞

+∞

∫
h = f * g or f ⊗ g

  H(u) = F(u)G(u)
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Practical Image Processing 
  Discrete convolution (in spatial domain) with filters for 

various digital signal processing operations 

  Easy to analyze, understand effects in frequency domain 
  E.g. blurring or bandlimiting by convolving with low pass filter  

Outline 

  Basic ideas of sampling, reconstruction, aliasing 

  Signal processing and Fourier analysis 

  Implementation of digital filters 

  Section 14.10 of FvDFH 

Discrete Convolution 
  Previously: Convolution as mult in freq domain 

  But need to convert digital image to and from to use that 
  Useful in some cases, but not for small filters 

  Previously seen: Sinc as ideal low-pass filter 
  But has infinite spatial extent, exhibits spatial ringing 
  In general, use frequency ideas, but consider 

implementation issues as well 

  Instead, use simple discrete convolution filters e.g. 
  Pixel gets sum of nearby pixels weighted by filter/mask 

2 0 -7 

5 4 9 

1 -6 -2 

Implementing Discrete Convolution 
  Fill in each pixel new image convolving with old 

  Not really possible to implement it in place 

  More efficient for smaller kernels/filters f 

  Normalization 
  If you don’t want overall brightness change, entries of filter 

must sum to 1.  You may need to normalize by dividing 

  Integer arithmetic 
  Simpler and more efficient 
  In general, normalization outside, round to nearest int 

 

  
Inew (a,b) = f (x − a,y − b)Iold (x,y)

y=b−width

b+width

∑
x=a−width

a+width

∑

Outline 

  Implementation of digital filters 
  Discrete convolution in spatial domain 
  Basic image-processing operations 
  Antialiased shift and resize 

Basic Image Processing 

  Blur 

  Sharpen 

  Edge Detection 

All implemented using convolution with different filters 
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Blurring 

  Used for softening appearance 

  Convolve with gaussian filter 
  Same as mult. by gaussian in freq. domain, so 

reduces high-frequency content 
  Greater the spatial width, smaller the Fourier width, 

more blurring occurs and vice versa  

  How to find blurring filter?  

Blurring 

Blurring Blurring 

Blurring Blurring 
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Blurring Filter 

  In general, for symmetry f(u,v) = f(u) f(v) 
  You might want to have some fun with asymmetric filters 

  We will use a Gaussian blur  
  Blur width sigma depends on kernel size n (3,5,7,11,13,19) 

Spatial Frequency 

  
f (u) = 1

2πσ
exp

−u2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥ σ = floor(n / 2) / 2

Discrete Filtering, Normalization 

  Gaussian is infinite 
  In practice, finite filter of size n (much less energy beyond 2 

sigma or 3 sigma).   
  Must renormalize so entries add up to 1  

  Simple practical approach 
  Take smallest values as 1 to scale others, round to integers 
  Normalize.  E.g. for n = 3, sigma = ½  

  
f (u,v) = 1

2πσ 2 exp − u2 +v 2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥ =

2
π

exp −2 u2 +v 2( )⎡
⎣

⎤
⎦

 

≈
0.012 0.09 0.012
0.09 0.64 0.09
0.012 0.09 0.012

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≈

1
86

1 7 1
7 54 7
1 7 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Basic Image Processing 

  Blur 

  Sharpen 

  Edge Detection 

All implemented using convolution with different filters 

Sharpening Filter 

  Unlike blur, want to accentuate high frequencies 

  Take differences with nearby pixels (rather than avg) 

  

f (x,y) = 1
7

−1 −2 −1
−2 19 −2
−1 −2 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Blurring Blurring 



9 

Blurring Basic Image Processing 

  Blur 

  Sharpen 

  Edge Detection 

All implemented using convolution with different filters 

Edge Detection 

  Complicated topic: subject of many PhD theses 

  Here, we present one approach (Sobel edge detector) 

  Step 1: Convolution with gradient (Sobel) filter 
  Edges occur where image gradients are large 
  Separately for horizontal and vertical directions 

  Step 2: Magnitude of gradient 
  Norm of horizontal and vertical gradients 

  Step 3: Thresholding 
  Threshold to detect edges 

Edge Detection 

Edge Detection Edge Detection 
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Details 

  Step 1: Convolution with gradient (Sobel) filter 
  Edges occur where image gradients are large 
  Separately for horizontal and vertical directions 

  Step 2: Magnitude of gradient 
  Norm of horizontal and vertical gradients 

  Step 3: Thresholding 

  

fhoriz(x,y) =
−1 0 1
−2 0 2
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ fvert (x,y) =

1 2 1
0 0 0
−1 −2 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

  
G = Gx

2
+ Gy

2

Outline 

  Implementation of digital filters 
  Discrete convolution in spatial domain 
  Basic image-processing operations 
  Antialiased shift and resize  

Antialiased Shift 

Shift image based on (fractional) sx and sy  
  Check for integers, treat separately 
  Otherwise convolve/resample with kernel/filter h:  

 u = x − sx v = y − sy

  
I(x,y) = h(u '− u,v '−v)I(u ',v ')

u ',v '
∑

Antialiased Scale Magnification 

Magnify image (scale s or  γ > 1)  
  Interpolate between orig. samples to evaluate frac vals 
  Do so by convolving/resampling with kernel/filter:  
  Treat the two image dimensions independently (diff scales) 

 
u = x

γ

  
I(x) = h(u '− u)I(u ')

u '=u/γ −width

u/γ +width

∑

Antialiased Scale Minification 

checkerboard.bmp 300x300: point sample checkerboard.bmp 300x300: Mitchell 

Antialiased Scale Minification 
Minify (reduce size of) image 

  Similar in some ways to mipmapping for texture maps 
  We use fat pixels of size 1/γ, with new size γ*orig size 

(γ is scale factor < 1).   
  Each fat pixel must integrate over corresponding 

region in original image using the filter kernel. 

 
u = x

γ
  
I(x) = h(γ (u '− u))I(u ')

u '=u−width/γ

u+width/γ

∑ = h(γ u '− x)I(u ')
u '=u−width/γ

u+width/γ

∑


