
1

Foundations of Computer Graphics
(Spring 2012)

CS 184, Lectures 19: Sampling and Reconstruction

 http://inst.eecs.berkeley.edu/~cs184

Acknowledgements: Thomas Funkhouser and Pat Hanrahan

Outline

  Basic ideas of sampling, reconstruction, aliasing

  Signal processing and Fourier analysis

  Implementation of digital filters

  Section 14.10 of FvDFH (you really should read)

  Post-spring break lectures more advanced topics
  No programming assignment
  But can be tested (at high level) in final

Some slides courtesy Tom Funkhouser

HW 3 Demos and Return Midterm Sampling and Reconstruction
  An image is a 2D array of samples

  Discrete samples from real-world continuous signal

Sampling and Reconstruction (Spatial) Aliasing

2

(Spatial) Aliasing

  Jaggies probably biggest aliasing problem

Sampling and Aliasing

  Artifacts due to undersampling or poor reconstruction

  Formally, high frequencies masquerading as low

  E.g. high frequency line as low freq jaggies

Image Processing pipeline Outline

  Basic ideas of sampling, reconstruction, aliasing

  Signal processing and Fourier analysis

  Implementation of digital filters

  Section 14.10 of FvDFH

Motivation

  Formal analysis of sampling and reconstruction

  Important theory (signal-processing) for graphics

  Also relevant in rendering, modeling, animation

Ideas

  Signal (function of time generally, here of space)

  Continuous: defined at all points; discrete: on a grid

  High frequency: rapid variation; Low Freq: slow
variation

  Images are converting continuous to discrete. Do this
sampling as best as possible.

  Signal processing theory tells us how best to do this

  Based on concept of frequency domain Fourier analysis

3

Sampling Theory
Analysis in the frequency (not spatial) domain

  Sum of sine waves, with possibly different offsets (phase)
  Each wave different frequency, amplitude

Fourier Transform

  Tool for converting from spatial to frequency domain

  Or vice versa

  One of most important mathematical ideas

  Computational algorithm: Fast Fourier Transform
  One of 10 great algorithms scientific computing
  Makes Fourier processing possible (images etc.)
  Not discussed here, but look up if interested

Fourier Transform

  Simple case, function sum of sines, cosines

  Continuous infinite case

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

Forward Transform: F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform: f (x) =
−∞

+∞

∫ F(u)e2π iuxdu

Fourier Transform

  Simple case, function sum of sines, cosines

  Discrete case

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

 F(u) = f (x) cos 2πux / N()− i sin 2πux / n()⎡⎣ ⎤⎦
x=0

x=N−1

∑ , 0 ≤ u ≤ N −1

f (x) = 1
N

F(u) cos 2πux / N() + i sin 2πux / n()⎡⎣ ⎤⎦
u=0

u=N−1

∑ , 0 ≤ x ≤ N −1

Fourier Transform: Examples 1

f (x) =
u=−∞

+∞

∑ F(u)e2π iux

F(u) = f (x)e−2π iux

0

2π

∫ dx

Single sine curve
(+constant DC term)

Fourier Transform Examples 2

Forward Transform: F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform: f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Common examples

δ (x − x0) e−2π iux0

1 δ (u)

e−ax2 π
ae−π 2u2 /a

 f (x) F(u)

4

Fourier Transform Properties

Forward Transform: F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform: f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Common properties

  Linearity:

  Derivatives: [integrate by parts]

  2D Fourier Transform

  Convolution (next)

F(f '(x)) = f '(x)e−2π iux

−∞

∞

∫ dx

= 2π iuF(u)

 F(af (x)+ bg(x)) = aF(f (x))+ bF(g(x))

Forward Transform: F(u,v) =
−∞

∞

∫ f (x,y)e−2π iux

−∞

∞

∫ e−2π ivydxdy

Inverse Transform: f (x,y) =
−∞

∞

∫ −∞

+∞

∫ F(u,v)e2π iuxe2π ivydudv

Sampling Theorem, Bandlimiting
  A signal can be reconstructed from its samples,

if the original signal has no frequencies above
half the sampling frequency – Shannon

  The minimum sampling rate for a bandlimited
function is called the Nyquist rate

Sampling Theorem, Bandlimiting

  A signal can be reconstructed from its samples, if
the original signal has no frequencies above half
the sampling frequency – Shannon

  The minimum sampling rate for a bandlimited
function is called the Nyquist rate

  A signal is bandlimited if the highest frequency is
bounded. This frequency is called the bandwidth

  In general, when we transform, we want to filter to
bandlimit before sampling, to avoid aliasing

Antialiasing

  Sample at higher rate
  Not always possible
  Real world: lines have infinitely high frequencies,

can’t sample at high enough resolution

  Prefilter to bandlimit signal
  Low-pass filtering (blurring)
  Trade blurriness for aliasing

Ideal bandlimiting filter

  Formal derivation is homework exercise

Outline

  Basic ideas of sampling, reconstruction, aliasing

  Signal processing and Fourier analysis
  Convolution

  Implementation of digital filters

  Section 14.10 of FvDFH

5

Convolution 1 Convolution 2

Convolution 3 Convolution 4

Convolution 5 Convolution in Frequency Domain

Forward Transform: F(u) = f (x)e−2π iux

−∞

∞

∫ dx

Inverse Transform: f (x) =
−∞

+∞

∫ F(u)e2π iuxdu
  Convolution (f is signal ; g is filter [or vice versa])

  Fourier analysis (frequency domain
multiplication)

h(y) = f (x)g(y − x)dx =
−∞

+∞

∫ g(x)f (y − x)dx
−∞

+∞

∫
h = f * g or f ⊗ g

 H(u) = F(u)G(u)

6

Practical Image Processing
  Discrete convolution (in spatial domain) with filters for

various digital signal processing operations

  Easy to analyze, understand effects in frequency domain
  E.g. blurring or bandlimiting by convolving with low pass filter

Outline

  Basic ideas of sampling, reconstruction, aliasing

  Signal processing and Fourier analysis

  Implementation of digital filters

  Section 14.10 of FvDFH

Discrete Convolution
  Previously: Convolution as mult in freq domain

  But need to convert digital image to and from to use that
  Useful in some cases, but not for small filters

  Previously seen: Sinc as ideal low-pass filter
  But has infinite spatial extent, exhibits spatial ringing
  In general, use frequency ideas, but consider

implementation issues as well

  Instead, use simple discrete convolution filters e.g.
  Pixel gets sum of nearby pixels weighted by filter/mask

2 0 -7

5 4 9

1 -6 -2

Implementing Discrete Convolution
  Fill in each pixel new image convolving with old

  Not really possible to implement it in place

  More efficient for smaller kernels/filters f

  Normalization
  If you don’t want overall brightness change, entries of filter

must sum to 1. You may need to normalize by dividing

  Integer arithmetic
  Simpler and more efficient
  In general, normalization outside, round to nearest int

Inew (a,b) = f (x − a,y − b)Iold (x,y)

y=b−width

b+width

∑
x=a−width

a+width

∑

Outline

  Implementation of digital filters
  Discrete convolution in spatial domain
  Basic image-processing operations
  Antialiased shift and resize

Basic Image Processing

  Blur

  Sharpen

  Edge Detection

All implemented using convolution with different filters

7

Blurring

  Used for softening appearance

  Convolve with gaussian filter
  Same as mult. by gaussian in freq. domain, so

reduces high-frequency content
  Greater the spatial width, smaller the Fourier width,

more blurring occurs and vice versa

  How to find blurring filter?

Blurring

Blurring Blurring

Blurring Blurring

8

Blurring Filter

  In general, for symmetry f(u,v) = f(u) f(v)
  You might want to have some fun with asymmetric filters

  We will use a Gaussian blur
  Blur width sigma depends on kernel size n (3,5,7,11,13,19)

Spatial Frequency

f (u) = 1

2πσ
exp

−u2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥ σ = floor(n / 2) / 2

Discrete Filtering, Normalization

  Gaussian is infinite
  In practice, finite filter of size n (much less energy beyond 2

sigma or 3 sigma).
  Must renormalize so entries add up to 1

  Simple practical approach
  Take smallest values as 1 to scale others, round to integers
  Normalize. E.g. for n = 3, sigma = ½

f (u,v) = 1

2πσ 2 exp − u2 +v 2

2σ 2

⎡

⎣
⎢

⎤

⎦
⎥ =

2
π

exp −2 u2 +v 2()⎡
⎣

⎤
⎦

≈
0.012 0.09 0.012
0.09 0.64 0.09
0.012 0.09 0.012

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ≈

1
86

1 7 1
7 54 7
1 7 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Basic Image Processing

  Blur

  Sharpen

  Edge Detection

All implemented using convolution with different filters

Sharpening Filter

  Unlike blur, want to accentuate high frequencies

  Take differences with nearby pixels (rather than avg)

f (x,y) = 1
7

−1 −2 −1
−2 19 −2
−1 −2 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Blurring Blurring

9

Blurring Basic Image Processing

  Blur

  Sharpen

  Edge Detection

All implemented using convolution with different filters

Edge Detection

  Complicated topic: subject of many PhD theses

  Here, we present one approach (Sobel edge detector)

  Step 1: Convolution with gradient (Sobel) filter
  Edges occur where image gradients are large
  Separately for horizontal and vertical directions

  Step 2: Magnitude of gradient
  Norm of horizontal and vertical gradients

  Step 3: Thresholding
  Threshold to detect edges

Edge Detection

Edge Detection Edge Detection

10

Details

  Step 1: Convolution with gradient (Sobel) filter
  Edges occur where image gradients are large
  Separately for horizontal and vertical directions

  Step 2: Magnitude of gradient
  Norm of horizontal and vertical gradients

  Step 3: Thresholding

fhoriz(x,y) =
−1 0 1
−2 0 2
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ fvert (x,y) =

1 2 1
0 0 0
−1 −2 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

G = Gx

2
+ Gy

2

Outline

  Implementation of digital filters
  Discrete convolution in spatial domain
  Basic image-processing operations
  Antialiased shift and resize

Antialiased Shift

Shift image based on (fractional) sx and sy
  Check for integers, treat separately
  Otherwise convolve/resample with kernel/filter h:

 u = x − sx v = y − sy

I(x,y) = h(u '− u,v '−v)I(u ',v ')

u ',v '
∑

Antialiased Scale Magnification

Magnify image (scale s or γ > 1)
  Interpolate between orig. samples to evaluate frac vals
  Do so by convolving/resampling with kernel/filter:
  Treat the two image dimensions independently (diff scales)

u = x

γ

I(x) = h(u '− u)I(u ')

u '=u/γ −width

u/γ +width

∑

Antialiased Scale Minification

checkerboard.bmp 300x300: point sample checkerboard.bmp 300x300: Mitchell

Antialiased Scale Minification
Minify (reduce size of) image

  Similar in some ways to mipmapping for texture maps
  We use fat pixels of size 1/γ, with new size γ*orig size

(γ is scale factor < 1).
  Each fat pixel must integrate over corresponding

region in original image using the filter kernel.

u = x

γ

I(x) = h(γ (u '− u))I(u ')

u '=u−width/γ

u+width/γ

∑ = h(γ u '− x)I(u ')
u '=u−width/γ

u+width/γ

∑

