# Foundations of Computer Graphics (Spring 2012)

CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184

Acknowledgements: Thomas Funkhouser and Pat Hanrahan

#### **Outline**

- Basic ideas of sampling, reconstruction, aliasing
- Signal processing and Fourier analysis
- Implementation of digital filters
- Section 14.10 of FvDFH (you really should read)
- Post-spring break lectures more advanced topics
  - No programming assignment
  - But can be tested (at high level) in final

Some slides courtesy Tom Funkhouser

#### **HW 3 Demos and Return Midterm**

# Sampling and Reconstruction An image is a 2D array of samples Discrete samples from real-world continuous signal Sampling Reconstruction

# Sampling and Reconstruction Original Styrial Sampling Sampling Americal Processary and Process









# Outline

- Basic ideas of sampling, reconstruction, aliasing
- Signal processing and Fourier analysis
- Implementation of digital filters
- Section 14.10 of FvDFH

#### Motivation

- Formal analysis of sampling and reconstruction
- Important theory (signal-processing) for graphics
- Also relevant in rendering, modeling, animation

#### Ideas

- Signal (function of time generally, here of space)
- Continuous: defined at all points; discrete: on a grid
- High frequency: rapid variation; Low Freq: slow variation
- Images are converting continuous to discrete. Do this sampling as best as possible.
- Signal processing theory tells us how best to do this
- Based on concept of frequency domain Fourier analysis

# Sampling Theory

Analysis in the frequency (not spatial) domain

- Sum of sine waves, with possibly different offsets (phase)
- Each wave different frequency, amplitude



#### **Fourier Transform**

- Tool for converting from spatial to frequency domain
- Or vice versa
- One of most important mathematical ideas
- Computational algorithm: Fast Fourier Transform
  - One of 10 great algorithms scientific computing
  - Makes Fourier processing possible (images etc.)
  - Not discussed here, but look up if interested

#### **Fourier Transform**

Simple case, function sum of sines, cosines

$$f(x) = \sum_{u = -\infty}^{+\infty} F(u)e^{2\pi i u x}$$
$$F(u) = \int_{0}^{2\pi} f(x)e^{-2\pi i u x} dx$$

Continuous infinite case

Forward Transform: 
$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i ux} dx$$

Inverse Transform: 
$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{2\pi i u x} du$$

#### **Fourier Transform**

Simple case, function sum of sines, cosines

$$f(x) = \sum_{u = -\infty}^{+\infty} F(u)e^{2\pi i u x}$$
$$F(u) = \int_{0}^{2\pi} f(x)e^{-2\pi i u x} dx$$

Discrete case

$$F(u) = \sum_{x=0}^{x=N-1} f(x) \Big[ \cos \Big( 2\pi u x / N \Big) - i \sin \Big( 2\pi u x / n \Big) \Big], \qquad 0 \le u \le N-1$$

$$f(x) = \frac{1}{N} \sum_{n=0}^{u=N-1} F(u) \Big[ \cos \Big( 2\pi u x / N \Big) + i \sin \Big( 2\pi u x / n \Big) \Big], \quad 0 \le x \le N-1$$

# Fourier Transform: Examples 1

Single sine curve (+constant DC term)



Forward Transform: 
$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i ux} dx$$

Inverse Transform: 
$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{2\pi i u x} du$$

Common examples

$$f(x) \qquad F(u)$$

$$\delta(x-x_0) \qquad e^{-2\pi i u x_0}$$

$$1 \qquad \delta(u)$$

$$e^{-ax^2} \qquad \sqrt{\frac{\pi}{a}} e^{-\pi^2 u^2/a}$$

### **Fourier Transform Properties**

Forward Transform: 
$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$$

Inverse Transform: 
$$f(x) = \int_{-\infty}^{+\infty} F(u)e^{2\pi i u x} du$$

- Common properties
  - Linearity: F(af(x)+bg(x))=aF(f(x))+bF(g(x))
  - Derivatives: [integrate by parts]  $F(f'(x)) = \int_{0}^{\infty} f'(x)e^{-2\pi i u x} dx$
  - $=2\pi iuF(u)$ 2D Fourier Transform

Forward Transform: 
$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-2\pi i u x} e^{-2\pi i v y} dx dy$$

Convolution (next)<sub>Inverse Transform</sub>  $f(x,y) = \int_{-\infty}^{+\infty} F(u,v)e^{2\pi i ux}e^{2\pi i ux}$ 

# Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate





#### Sampling Theorem, Bandlimiting

- A signal can be reconstructed from its samples, if the original signal has no frequencies above half the sampling frequency – Shannon
- The minimum sampling rate for a bandlimited function is called the Nyquist rate
- A signal is bandlimited if the highest frequency is bounded. This frequency is called the bandwidth
- In general, when we transform, we want to filter to bandlimit before sampling, to avoid aliasing

# **Antialiasing**

- Sample at higher rate

  - Not always possible
    Real world: lines have infinitely high frequencies, can't sample at high enough resolution
- Prefilter to bandlimit signal
  - Low-pass filtering (blurring)
  - Trade blurriness for aliasing

# Ideal bandlimiting filter

Formal derivation is homework exercise





Spatial domain



#### Outline

- Basic ideas of sampling, reconstruction, aliasing
- Signal processing and Fourier analysis Convolution
- Implementation of digital filters
- Section 14.10 of FvDFH













# **Practical Image Processing**

- Discrete convolution (in spatial domain) with filters for various digital signal processing operations
- Easy to analyze, understand effects in frequency domain E.g. blurring or bandlimiting by convolving with low pass filter



#### Outline

- Basic ideas of sampling, reconstruction, aliasing
- Signal processing and Fourier analysis
- Implementation of digital filters
- Section 14.10 of FvDFH

#### **Discrete Convolution**

- Previously: Convolution as mult in freq domain
  - But need to convert digital image to and from to use that
  - Useful in some cases, but not for small filters
- Previously seen: Sinc as ideal low-pass filter
  - But has infinite spatial extent, exhibits spatial ringing
  - In general, use frequency ideas, but consider implementation issues as well
- Instead, use simple discrete convolution filters e.g.
  - Pixel gets sum of nearby pixels weighted by filter/mask

| 2 | 0  | -7 |
|---|----|----|
| 5 | 4  | 9  |
| 1 | -6 | -2 |

#### **Implementing Discrete Convolution**

- Fill in each pixel new image convolving with old
  - Not really possible to implement it in place

$$I_{\text{new}}(a,b) = \sum_{x=a, \text{ width } }^{a+\text{width}} \sum_{y=b, \text{ width } }^{b+\text{width}} f(x-a,y-b)I_{\text{old}}(x,y)$$

- More efficient for smaller kernels/filters f
- Normalization
  - If you don't want overall brightness change, entries of filter must sum to 1. You may need to normalize by dividing
- Integer arithmetic
  - Simpler and more efficient
  - In general, normalization outside, round to nearest int

#### Outline

- Implementation of digital filters
  - Discrete convolution in spatial domain
  - Basic image-processing operations
  - Antialiased shift and resize

#### **Basic Image Processing**

- Blur
- Sharpen
- Edge Detection

All implemented using convolution with different filters

# Blurring

- Used for softening appearance
- Convolve with gaussian filter
   Same as mult. by gaussian in freq. domain, so reduces high-frequency content
   Greater the spatial width, smaller the Fourier width, more blurring occurs and vice versa
- How to find blurring filter?











# **Blurring Filter**

- In general, for symmetry f(u,v) = f(u) f(v)
   You might want to have some fun with asymmetric filters
- We will use a Gaussian blur
  - Blur width sigma depends on kernel size n (3,5,7,11,13,19)



# **Basic Image Processing**

- Blur
- Sharpen
- Edge Detection

All implemented using convolution with different filters

# Sharpening Filter

**Discrete Filtering, Normalization** 

In practice, finite filter of size n (much less energy beyond 2

Simple practical approach

Take smallest values as 1 to scale others, round to integers

Gaussian is infinite

sigma or 3 sigma).

Must renormalize so entries add up to 1

Normalize. E.g. for n = 3, sigma = ½

- Unlike blur, want to accentuate high frequencies
- Take differences with nearby pixels (rather than avg)

$$f(x,y) = \frac{1}{7} \begin{pmatrix} -1 & -2 & -1 \\ -2 & 19 & -2 \\ -1 & -2 & -1 \end{pmatrix}$$







# **Basic Image Processing**

- Blur
- Sharpen
- Edge Detection

All implemented using convolution with different filters

# **Edge Detection**

- Complicated topic: subject of many PhD theses
- Here, we present one approach (Sobel edge detector)
- Step 1: Convolution with gradient (Sobel) filter
  - Edges occur where image gradients are large
     Separately for horizontal and vertical directions
- Step 2: Magnitude of gradient
  - Norm of horizontal and vertical gradients
- Step 3: Thresholding

  Threshold to detect edges







#### **Details**

- Step 1: Convolution with gradient (Sobel) filter
  - Edges occur where image gradients are large
     Separately for horizontal and vertical directions

$$f_{horiz}(x,y) = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} \quad f_{vert}(x,y) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$

- Step 2: Magnitude of gradient
  Norm of horizontal and vertical gradients

$$G = \sqrt{\left|G_{x}\right|^{2} + \left|G_{y}\right|^{2}}$$

Step 3: Thresholding

#### **Outline**

- Implementation of digital filters
  - Discrete convolution in spatial domain
  - Basic image-processing operations
  - Antialiased shift and resize

#### **Antialiased Shift**

Shift image based on (fractional)  $s_x$  and  $s_y$ 

- Check for integers, treat separately
- Otherwise convolve/resample with kernel/filter h:

$$u = x - s_x$$
  $v = y - s_y$ 

$$I(x,y) = \sum_{u',v'} h(u'-u,v'-v)I(u',v')$$

#### Antialiased Scale Magnification

Magnify image (scale s or  $\gamma > 1$ )

- Interpolate between orig. samples to evaluate frac vals
- Do so by convolving/resampling with kernel/filter: Treat the two image dimensions independently (diff scales)

$$u = \frac{x}{\gamma}$$

$$I(x) = \sum_{u'=u/\gamma - \text{width}}^{u/\gamma + \text{width}} h(u'-u)I(u')$$

# **Antialiased Scale Minification**



checkerboard.bmp 300x300: point sample checkerboard.bmp 300x300: Mitchell

#### **Antialiased Scale Minification**

Minify (reduce size of) image

- Similar in some ways to mipmapping for texture maps
   We use fat pixels of size 1/γ, with new size γ\*orig size ( $\gamma$  is scale factor < 1).
- Each fat pixel must integrate over corresponding region in original image using the filter kernel.

$$u = \frac{x}{\gamma} \quad I(x) = \sum_{u'=u-\text{width}/\gamma}^{u+\text{width}/\gamma} h(\gamma(u'-u))I(u') = \sum_{u'=u-\text{width}/\gamma}^{u+\text{width}/\gamma} h(\gamma u'-x)I(u')$$