Foundations of Computer Graphics
(Spring 2012)

CS 184, Lectures 19: Sampling and Reconstruction

http://inst.eecs.berkeley.edu/~cs184

Acknowledgements: Thomas Funkhouser and Pat Hanrahan

HW 3 Demos and Return Midterm

Sampling and Reconstruction

Inh n
) T it
i A A
I Il
S
oSO 11 ARt
l Reconstruction

Figure 19.9 FvDFH

Outline

Basic ideas of sampling, reconstruction, aliasing
Signal processing and Fourier analysis

Implementation of digital filters

Section 14.10 of FvDFH (you really should read)

Post-spring break lectures more advanced topics
No programming assignment
But can be tested (at high level) in final

Some slides courtesy Tom Funkhouser

Sampling and Reconstruction
An image is a 2D array of samples

Discrete samples from real-world continuous signal

Sampling

Reconstruction

(Spatial) Aliasing

(Spatial) Aliasing Sampling and Aliasing

Jaggies probably biggest aliasing problem Artifacts due to undersampling or poor reconstruction

Formally, high frequencies masquerading as low

E.g. high frequency line as low freq jaggies

\

- Under-sampling Figure 14.17 FvDFH
Jaggies

Image Processing pipeline Outline

¢ Real world

Discrete samples (pixels) S/gnal processing and Fourier analysis

Reconstructed function

Transform

Transformed function

Section 14.10 of FvDFH

Bandlimited function

Basic ideas of sampling, reconstruction, aliasing

Implementation of digital filters

Discrete samples (pixels)

Display

Motivation Ideas

Formal analysis of sampling and reconstruction Signal (function of time generally, here of space)
Important theory (signal-processing) for graphics Continuous: defined at all points; discrete: on a grid

Also relevant in rendering, modeling, animation High frequency: rapid variation; Low Freq: slow
variation

Images are converting continuous to discrete. Do this
sampling as best as possible.

Signal processing theory tells us how best to do this

Based on concept of frequency domain Fourier analysis

Sampling Theory

Analysis in the frequency (not spatial) domain

Sum of sine waves, with possibly different offsets (phase)

Each wave different frequency, amplitude

i

|F @]

Figure 2.6 Wolberg

Fourier Transform

Simple case, function sum of sines, cosines

f(X): i F(u)e2m‘ux

U=—o0

2r .
F(u) f(x)e 2™ dx

(0]
Continuous infinite case

Forward Transform: .[f(X)e pa ”i"xdx

+oo .
Inverse Transform: I F(U)ezmuxdu

Fourier Transform: Examples 1

Single sine curve
(+constant DC term)

Flu)= [f(x)e 2 dx

f(x) =

Fourier Transform

Tool for converting from spatial to frequency domain

Or vice versa
One of most important mathematical ideas

Computational algorithm: Fast Fourier Transform
One of 10 great algorithms scientific computing
Makes Fourier processing possible (images etc.)
Not discussed here, but look up if interested

Fourier Transform

Simple case, function sum of sines, cosines

f(X): i F(u)e2m‘ux

2r .
Flu)= |, f(x)e 2™ dx
Discrete case

x=N-1

F(u)="Y, f(x)[cos(2rux/N)-isin(2zux/n)] 0<usN-1

1 u=N-1

N u=0

Fourier Transform Examples 2

Forward Transform: F(U) = J. f(X)e—Zniude
oo .
Inverse Transform: f(X) = J. F(u)ez”'“xdu
Common examples
f(x) F(u)

5(X _ XO) —2miux,

Yy F(u)[cos(2;rux/N)+isin(znux/n)], 0<x<N-1

Fourier Transform Properties

Forward Transform: F(U) = J.w f(X)e—eriude

+oo .
Inverse Transform: f(X) = J ; F(u)ez”’“xdu

Common properties
Linearity: F(af(x)+bg(x)) = aF(f(x))+ bF(g(x))

Derivatives: [integrate by parts] F(f'(x)) = J:f ‘(x)e 2" *dx

. = 2riuF(u)
2D Fourier Transform

R F(u,v):] | fxyre

Convolution (next),, f(xvy):j [~ Fuve

Sampling Theorem, Bandlimiting

A signal can be reconstructed from its samples, if
the original signal has no frequencies above half
the sampling frequency — Shannon

The minimum sampling rate for a bandlimited
function is called the Nyquist rate

A signal is bandlimited if the highest frequency is
bounded. This frequency is called the bandwidth

In general, when we transform, we want to filter to
bandlimit before sampling, to avoid aliasing

Ideal bandlimiting filter

Formal derivation is homework exercise

. sin zox
Sine(x) =——
P

Figure 4.5 Wolberg

Sampling Theorem, Bandlimiting

A signal can be reconstructed from its samples,
if the original signal has no frequencies above
half the sampling frequency — Shannon

The minimum sampling rate for a bandlimited
function is called the Nyquist rate

AT

Under-sampling |

P N

Antialiasing

Sample at higher rate
Not always possible
Real world: lines have infinitely high frequencies,
can’ t sample at high enough resolution

Prefilter to bandlimit signal
Low-pass filtering (blurring)
Trade blurriness for aliasing

Outline

Basic ideas of sampling, reconstruction, aliasing

Signal processing and Fourier analysis
Convolution

Implementation of digital filters

Section 14.10 of FvDFH

Convolution 2

Convolution 1

+ Spatial domain: output pixel is weighted sum of
pixels in neighborhood of input image
o Pattern of weights is the “filter”

i i Filter
|

« Example 1:

i

Input Output

Input

Convolution 3 Convolution 4

« Example 1:

0.5

u_zii iuzs Filter .25 } 25 Filter
inn |l
)3 X

Input Ou

Convolution 5 Convolution in Frequency Domain

Forward Transform: F(U) = IN f(x)e—Zm'ude

+ Example 1:

+oo :
m-i“;i 025 Filter Inverse Transform: f(X) = J F(U)GZlexdu
Convolution (f is signal ; g is filter [or vice versa])
i +o0

hiy)= [f(x)gy - x)dx= [g(x)f(y - x)dx

‘[‘ h=f*g or f®g
e

Fourier analysis (frequency domain

multiplication) -
Input Output H(u)= F(u)G(u)

Practical Image Processing

Discrete convolution (in spatial domain) with filters for
various digital signal processing operations

Easy to analyze, understand effects in frequency domain
E.g. blurring or bandlimiting by convolving with low pass filter

« Finite low-pass filters { Real world
o Point sampling (bad)
o Triangle filter Discrete samples (pixels)

o Gaussian filter

Reconstructed function

Transform

Transformed function
Bandlimited function

Discrete samples (pixels)

Display

Discrete Convolution

Previously: Convolution as mult in freq domain
But need to convert digital image to and from to use that
Useful in some cases, but not for small filters

Previously seen: Sinc as ideal low-pass filter
But has infinite spatial extent, exhibits spatial ringing
In general, use frequency ideas, but consider
implementation issues as well

Instead, use simple discrete convolution filters e.g.
Pixel gets sum of nearby pixels weighted by filter/mask

Outline

Implementation of digital filters
Discrete convolution in spatial domain
Basic image-processing operations
Antialiased shift and resize

Outline

Basic ideas of sampling, reconstruction, aliasing
Signal processing and Fourier analysis

Implementation of digital filters

Section 14.10 of FvDFH

Implementing Discrete Convolution

Fill in each pixel new image convolving with old

Not really possible to implement it in place
atwidth b+width

Inew(a’b) = 2 z f(X_ ay- b)lom(X,y)
x=a-width y=b—width

More efficient for smaller kernels/filters f

Normalization
If you don’ t want overall brightness change, entries of filter
must sum to 1. You may need to normalize by dividing

Integer arithmetic
Simpler and more efficient
In general, normalization outside, round to nearest int

Basic Image Processing

Blur
Sharpen
Edge Detection

All implemented using convolution with different filters

Blurring

Used for softening appearance

Convolve with gaussian filter
Same as mult. by gaussian in freq. domain, so
reduces high-frequency content
Greater the spatial width, smaller the Fourier width,
more blurring occurs and vice versa

How to find blurring filter?

Blurring Filter

In general, for symmetry f(u,v) = f(u) f(v)
You might want to have some fun with asymmetric filters

We will use a Gaussian blur
Blur width sigma depends on kernel size n (3,5,7,11,13,19)

Spatial Frequency

o =floor(n/2)/2

Basic Image Processing

Blur
Sharpen
Edge Detection

All implemented using convolution with different filters

Discrete Filtering, Normalization

Gaussian is infinite
In practice, finite filter of size n (much less energy beyond 2
sigma or 3 sigma).
Must renormalize so entries add up to 1

Simple practical approach
Take smallest values as 1 to scale others, round to integers
Normalize. E.g. for n = 3, sigma = %

2 2 N
f(uv)= 27:(72 exp {— uzg‘; } = ;exp[—Z(uz + vzl)]
0.012 0.09 0.012 }

0.09 0.64 0.09
. 0.012 0.09 0.012

Sharpening Filter

Unlike blur, want to accentuate high frequencies

Take differences with nearby pixels (rather than avg)

12
fxy)=5| -2 19 -2
1 2 -1

Edge Detection

Complicated topic: subject of many PhD theses
Here, we present one approach (Sobel edge detector)

Step 1: Convolution with gradient (Sobel) filter
Edges occur where image gradients are large
Separately for horizontal and vertical directions

Step 2: Magnitude of gradient
Norm of horizontal and vertical gradients

Step 3: Thresholding
Threshold to detect edges

Edge Detection

Basic Image Processing

Blur
Sharpen
Edge Detection

All implemented using convolution with different filters

Edge Detection

Details

Step 1: Convolution with gradient (Sobel) filter
Edges occur where image gradients are large
Separately for horizontal and vertical directions

1 2 1
Fronz(%:Y) = fen(xy)=| 0 0 0
-1 -2 -1

Step 2: Magnitude of gradient

Norm of horizontal and vertical gradients
G=yG/ +G,
Step 3: Thresholding

Antialiased Shift

Shift image based on (fractional) s, and s,
Check for integers, treat separately
Otherwise convolve/resample with kernelffilter h:

U= X—Sx v=y-5y

I(xy)="Y hu'-uv'-v)i(u',v")

u'y'

Antialiased Scale Minification

checkerboard.bmp 300x300: point sample checkerboard.bmp 300x300: Mitchell

Outline

Implementation of digital filters
Discrete convolution in spatial domain
Basic image-processing operations
Antialiased shift and resize

Antialiased Scale Magnification

Magnify image (scale s or y > 1)
Interpolate between orig. samples to evaluate frac vals
Do so by convolving/resampling with kernel/filter:
Treat the two image dimensions independently (diff scales)

u==
14

uly+width
h(u'-u)l(u")

u'=uly—width

Antialiased Scale Minification

Minify (reduce size of) image
Similar in some ways to mipmapping for texture maps
We use fat pixels of size 1/y, with new size y*orig size
(v is scale factor < 1).
Each fat pixel must integrate over corresponding
region in original image using the filter kernel.

Chyu-uie) =Y, hu- i)

u'=u-width/y u'=u-width/y

10

