Foundations of Computer Graphics (Spring 2012)

CS 184, Lecture 2: Review of Basic Math

http://inst.eecs.berkeley.edu/~cs184

To Do

- Complete Assignment 0 (a due 26, b due 31)
- Get help if issues with compiling, programming
- Textbooks: access to OpenGL references
- About first few lectures
- Somewhat technical: core math ideas in graphics

HW1 is simple (only few lines of code): Lets you see how to use some ideas discussed in lecture, create images

Motivation and Outline

- Many graphics concepts need basic math like linear algebra
- Vectors (dot products, cross products, ...)
- Matrices (matrix-matrix, matrix-vector mult., ...)
- E.g: a point is a vector, and an operation like translating or rotating points on object can be matrix-vector multiply
" Chapters 2.4 (vectors) and 5.2 (matrices)
- Worthwhile to read all of chapters 2 and 5
- Should be refresher on very basic material for most of you
- If you don't understand, talk to me (review in office hours)

" Note: book talks about right and left-handed coordinate systems. We always use right-handed

Vector Multiplication

- Dot product (2.4.3)
- Cross product (2.4.4)
- Orthonormal bases and coordinate frames $(2.4 .5,6)$
- Note: book talks about right and left-handed coordinate systems. We always use right-handed

Cross (vector) product

$$
\underbrace{a}_{i} \begin{gathered}
a \times b=-b \times a \\
\|a \times b\|=\|a\| b \| \sin \phi \\
\mathbf{b}
\end{gathered}
$$

- Cross product orthogonal to two initial vectors
- Direction determined by right-hand rule
" Useful in constructing coordinate systems (later)

Cross product: Properties

$$
\begin{array}{ll}
x \times y=+z & \\
y \times x=-z & a \times b=-b \times a \\
y \times z=+x & a \times a=0 \\
z \times y=-x & a \times(b+c)=a \times b+a \times c \\
z \times x=+y & \\
x \times z=-y &
\end{array}
$$

Cross product: Cartesian formula?
$a \times b=\left|\begin{array}{ccc}x & y & z \\ x_{a} & y_{a} & z_{a} \\ x_{b} & y_{b} & z_{b}\end{array}\right|=\left(\begin{array}{l}y_{a} z_{b}-y_{b} z_{a} \\ z_{a} x_{b}-x_{a} z_{b} \\ x_{a} y_{b}-y_{a} x_{b}\end{array}\right)$
$a \times b=A^{*} b=\left(\begin{array}{ccc}0 & -z_{a} & y_{a} \\ z_{a} & 0 & -x_{a} \\ -y_{a} & x_{a} & 0\end{array}\right)\left(\begin{array}{l}x_{b} \\ y_{b} \\ z_{b}\end{array}\right)$
Dual matrix of vector a

Vector Multiplication

- Dot product (2.4.3)
- Cross product (2.4.4)
- Orthonormal bases and coordinate frames $(2.4 .5,6)$
- Note: book talks about right and left-handed coordinate systems. We always use right-handed

Orthonormal bases/coordinate frames

- Important for representing points, positions, locations
" Often, many sets of coordinate systems (not just X, Y, Z)
" Global, local, world, model, parts of model (head, hands,
- Critical issue is transforming between these systems/bases
- Topic of next 3 lectures

Coordinate Frames

- Any set of 3 vectors (in 3D) so that

$$
\begin{aligned}
& \|u\|=\|v\|=\|w\|=1 \\
& u \cdot v=v \cdot w=u \bullet w=0 \\
& w=u \times v \\
& p=(p \cdot u) u+(p \cdot v) v+(p \cdot w) w
\end{aligned}
$$

Constructing a coordinate frame

- Often, given a vector a (viewing direction in HW1), want to construct an orthonormal basis
- Need a second vector b (up direction of camera in HW1)
- Construct an orthonormal basis (for instance, camera coordinate frame to transform world objects into in HW1)

What is a matrix

- Array of numbers ($\mathrm{m} \times \mathrm{n}=\mathrm{m}$ rows, n columns)

$$
\left(\begin{array}{ll}
1 & 3 \\
5 & 2 \\
0 & 4
\end{array}\right)
$$

- Addition, multiplication by a scalar simple: element by element

$$
\begin{aligned}
w & =\frac{a}{\|a\|} \\
u & =\frac{b \times w}{\|b \times w\|} \\
v & =w \times u
\end{aligned}
$$

We want to associate \mathbf{w} with \mathbf{a}, and \mathbf{v} with \mathbf{b}

- But \mathbf{a} and \mathbf{b} are neither orthogonal nor unit norm
- And we also need to find \mathbf{u}

Matrix-matrix multiplication

- Number of columns in first must = rows in second
$\left(\begin{array}{ll}1 & 3 \\ 5 & 2 \\ 0 & 4\end{array}\right)\left(\begin{array}{llll}3 & 6 & 9 & 4 \\ 2 & 7 & 8 & 3\end{array}\right)$
- Element (i,j) in product is dot product of row i of first matrix and column j of second matrix

Matrix-matrix multiplication

- Number of columns in first must = rows in second

- Element (i,j) in product is dot product of row i of first matrix and column j of second matrix

Matrix-matrix multiplication

- Number of columns in first must = rows in second
$\left(\begin{array}{llll}3 & 6 & 9 & 4 \\ 2 & 7 & 8 & 3\end{array}\right)\left(\begin{array}{ll}1 & 3 \\ 5 & 2 \\ 0 & 4\end{array}\right)$ NOT EVEN LEGAL!!
- Non-commutative (AB and BA are different in general)
- Associative and distributive
- $A(B+C)=A B+A C$
- $(A+B) C=A C+B C$

Identity Matrix and Inverses

$$
\begin{aligned}
& I_{3 \times 3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& A A^{-1}=A^{-1} A=I \\
& (A B)^{-1}=B^{-1} A^{-1}
\end{aligned}
$$

