Foundations of Computer Graphics (Spring 2012)

CS 184, Lecture 2: Review of Basic Math http://inst.eecs.berkeley.edu/~cs184

To Do

- Complete Assignment 0 (a due 26, b due 31)
- Get help if issues with compiling, programming
- Textbooks: access to OpenGL references
- About first few lectures
 - Somewhat technical: core math ideas in graphics
 - HW1 is simple (only few lines of code): Lets you see how to use some ideas discussed in lecture, create images

Motivation and Outline

- Many graphics concepts need basic math like linear algebra

 - Vectors (dot products, cross products, ...)
 Matrices (matrix-matrix, matrix-vector mult., ...)
 - E.g: a point is a vector, and an operation like translating or rotating points on object can be matrix-vector multiply
- Chapters 2.4 (vectors) and 5.2 (matrices)
 - Worthwhile to read all of chapters 2 and 5
- Should be refresher on very basic material for most of you
 - If you don't understand, talk to me (review in office hours)

Vectors

- Length and direction. Absolute position not important Usually written as \vec{a} or in bold. Magnitude written as $\|\vec{a}\|$
- Use to store offsets, displacements, locations
 - But strictly speaking, positions are not vectors and cannot be added: a location implicitly involves an origin, while an offset does not.

Vector Addition

- Geometrically: Parallelogram rule
- In cartesian coordinates (next), simply add coords

Cartesian Coordinates

X and Y can be any (usually orthogonal *unit*) vectors

$$A = \begin{pmatrix} x \\ y \end{pmatrix}$$
 $A^T = \begin{pmatrix} x & y \end{pmatrix}$ $||A|| = \sqrt{x^2 + y^2}$

Vector Multiplication

- Dot product (2.4.3)
- Cross product (2.4.4)
- Orthonormal bases and coordinate frames (2.4.5,6)
- Note: book talks about right and left-handed coordinate systems. We always use right-handed

Dot product: some applications in CG

- Find angle between two vectors (e.g. cosine of angle between light source and surface for shading)
- Finding projection of one vector on another (e.g. coordinates of point in arbitrary coordinate system)
- Advantage: computed easily in cartesian components

Dot product in Cartesian components

$$a \bullet b = \begin{pmatrix} x_a \\ y_a \end{pmatrix} \bullet \begin{pmatrix} x_b \\ y_b \end{pmatrix} = ?$$

$$a \bullet b = \begin{pmatrix} x_a \\ y_a \end{pmatrix} \bullet \begin{pmatrix} x_b \\ y_b \end{pmatrix} = x_a x_b + y_a y_b$$

Vector Multiplication

- Dot product (2.4.3)
- Cross product (2.4.4)
- Orthonormal bases and coordinate frames (2.4.5,6)
- Note: book talks about right and left-handed coordinate systems. We always use right-handed

Cross (vector) product

$$\begin{vmatrix} \mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \\ \|\mathbf{a} \times \mathbf{b}\| = \|\mathbf{a}\| \|\mathbf{b}\| \sin \phi \end{vmatrix}$$

$$\mathbf{b}$$

- Cross product orthogonal to two initial vectors
- Direction determined by right-hand rule
- Useful in constructing coordinate systems (later)

Cross product: Properties

$$x \times y = +z$$

 $y \times x = -z$ $a \times b = -b \times a$
 $y \times z = +x$ $a \times a = 0$
 $z \times y = -x$ $a \times (b+c) = a \times b + a \times c$
 $z \times x = +y$ $a \times (kb) = k(a \times b)$
 $x \times z = -y$

Cross product: Cartesian formula?

$$a \times b = \begin{vmatrix} x & y & z \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{vmatrix} = \begin{pmatrix} y_a z_b - y_b z_a \\ z_a x_b - x_a z_b \\ x_a y_b - y_a x_b \end{pmatrix}$$

$$\mathbf{a} \times \mathbf{b} = \mathbf{A} \cdot \mathbf{b} = \begin{pmatrix} 0 & -\mathbf{z}_{a} & \mathbf{y}_{a} \\ \mathbf{z}_{a} & 0 & -\mathbf{x}_{a} \\ -\mathbf{y}_{a} & \mathbf{x}_{a} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x}_{b} \\ \mathbf{y}_{b} \\ \mathbf{z}_{b} \end{pmatrix}$$

Dual matrix of vector a

Vector Multiplication

- Dot product (2.4.3)
- Cross product (2.4.4)
- Orthonormal bases and coordinate frames (2.4.5,6)
- Note: book talks about right and left-handed coordinate systems. We always use right-handed

Orthonormal bases/coordinate frames

- Important for representing points, positions, locations
- Often, many sets of coordinate systems (not just X, Y, Z)
 - Global, local, world, model, parts of model (head, hands, ...)
- Critical issue is transforming between these systems/bases Topic of next 3 lectures

Coordinate Frames

Any set of 3 vectors (in 3D) so that

$$||u|| = ||v|| = ||w|| = 1$$

 $u \cdot v = v \cdot w = u \cdot w = 0$
 $w = u \times v$

$$p = (p \cdot u)u + (p \cdot v)v + (p \cdot w)w$$

Constructing a coordinate frame

- Often, given a vector a (viewing direction in HW1), want to construct an orthonormal basis
- Need a second vector **b** (up direction of camera in HW1)
- Construct an orthonormal basis (for instance, camera coordinate frame to transform world objects into in HW1)

Constructing a coordinate frame?

We want to associate \boldsymbol{w} with \boldsymbol{a} , and \boldsymbol{v} with \boldsymbol{b}

- But **a** and **b** are neither orthogonal nor unit norm
- And we also need to find u

$$w = \frac{a}{\|a\|}$$

$$u = \frac{b \times w}{\|b \times w\|}$$

$$V = W \times U$$

Matrices

- Can be used to transform points (vectors)
 - Translation, rotation, shear, scale (more detail next lecture)
- Section 5.2.1 and 5.2.2 of text
 - Instructive to read all of 5 but not that relevant to course

What is a matrix

Array of numbers (m×n = m rows, n columns)

 Addition, multiplication by a scalar simple: element by element

Matrix-matrix multiplication

Number of columns in first must = rows in second

$$\begin{pmatrix} 1 & 3 \\ 5 & 2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 & 9 & 4 \\ 2 & 7 & 8 & 3 \end{pmatrix}$$

 Element (i,j) in product is dot product of row i of first matrix and column j of second matrix

Matrix-matrix multiplication

Number of columns in first must = rows in second

$$\begin{pmatrix} 1 & 3 \\ 5 & 2 \\ 0 & 4 \end{pmatrix} \begin{pmatrix} 3 & 6 & 9 & 4 \\ 2 & 7 & 8 & 3 \end{pmatrix} = \begin{pmatrix} 9 & 27 & 33 & 13 \\ 19 & 44 & 61 & 26 \\ 8 & 28 & 32 & 12 \end{pmatrix}$$

 Element (i,j) in product is dot product of row i of first matrix and column j of second matrix

Matrix-matrix multiplication

Number of columns in first must = rows in second

$$\begin{pmatrix}
1 & 3 \\
5 & 2 \\
0 & 4
\end{pmatrix}
\begin{pmatrix}
3 & 6 & 9 & 4 \\
2 & 7 & 8 & 3
\end{pmatrix} = \begin{pmatrix}
9 & 27 & 33 & 13 \\
9 & 44 & 61 & 26 \\
8 & 28 & 32 & 12
\end{pmatrix}$$

 Element (i,j) in product is dot product of row i of first matrix and column j of second matrix

Matrix-matrix multiplication

Number of columns in first must = rows in second

$$\begin{pmatrix}
1 & 3 \\
5 & 2 \\
\hline
0 & 4
\end{pmatrix}
\begin{pmatrix}
3 & 6 & 9 & 4 \\
2 & 7 & 8 & 3
\end{pmatrix} = \begin{pmatrix}
9 & 27 & 33 & 13 \\
19 & 44 & 61 & 26 \\
\hline
8 & 28 & 32 & 12
\end{pmatrix}$$

 Element (i,j) in product is dot product of row i of first matrix and column j of second matrix

Matrix-matrix multiplication

Number of columns in first must = rows in second

$$\begin{pmatrix} 3 & 6 & 9 & 4 \\ 2 & 7 & 8 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 5 & 2 \\ 0 & 4 \end{pmatrix} \text{ NOT EVEN LEGAL!!}$$

- Non-commutative (AB and BA are different in general)
- Associative and distributive
 - A(B+C) = AB + AC
 - (A+B)C = AC + BC

Matrix-Vector Multiplication

- Key for transforming points (next lecture)
- Treat vector as a column matrix (m×1)
- E.g. 2D reflection about y-axis (from textbook)

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}$$

Transpose of a Matrix (or vector?)

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

$$(AB)^T = B^T A^T$$

Identity Matrix and Inverses

$$I_{3\times3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$AA^{-1} = A^{-1}A = I$$

 $(AB)^{-1} = B^{-1}A^{-1}$

Vector multiplication in Matrix form

Dot product? $a \cdot b = a^T b$

$$a \bullet b = a^T b$$

$$(X_a Y_a Z_a) \begin{pmatrix} X_b \\ Y_b \\ Z_b \end{pmatrix} = (X_a X_b + Y_a Y_b + Z_a Z_b)$$

$$(x_a \quad y_a \quad Z_a) \begin{pmatrix} x_b \\ y_b \\ z_b \end{pmatrix} = (x_a x_b + y_a y_b + Z_a Z_b)$$
• Cross product?
$$a \times b = A^* b = \begin{pmatrix} 0 & -Z_a & y_a \\ Z_a & 0 & -X_a \\ -Y_a & X_a & 0 \end{pmatrix} \begin{pmatrix} x_b \\ y_b \\ Z_b \end{pmatrix}$$
Dual matrix of vector a