
1

Foundations of Computer Graphics
(Spring 2012)

CS 184, Lecture 20: Texture Mapping
http://inst.eecs.berkeley.edu/~cs184

Many slides from Greg Humphreys, UVA and
Rosalee Wolfe, DePaul tutorial teaching texture mapping visually
Chapter 11 in text book covers some portions

To Do

  Work on HW5 milestone

  Prepare for final push on HW 5, HW 6

Texture Mapping
  Important topic: nearly all objects textured

  Wood grain, faces, bricks and so on
  Adds visual detail to scenes

  Meant as a fun and practically useful lecture

Polygonal model With surface texture

Adding Visual Detail
  Basic idea: use images instead of more

polygons to represent fine scale color variation

Parameterization

geometry

+ =

image texture map

  Q: How do we decide where on the geometry
 each color from the image should go?

Option: Varieties of projections

[Paul Bourke]

2

Option: unfold the surface

[Piponi2000]

Option: make an atlas

[Sander2001]

charts atlas surface

Option: it’’s the artist’’s problem Outline

  Types of projections

  Interpolating texture coordinates

  Broader use of textures

How to map object to texture?

  To each vertex (x,y,z in object coordinates),
must associate 2D texture coordinates (s,t)

  So texture fits “nicely” over object

Idea: Use Map Shape

  Map shapes correspond to various projections
  Planar, Cylindrical, Spherical

  First, map (square) texture to basic map shape

  Then, map basic map shape to object
  Or vice versa: Object to map shape, map shape to square

  Usually, this is straightforward
  Maps from square to cylinder, plane, sphere well defined
  Maps from object to these are simply spherical, cylindrical,

cartesian coordinate systems

3

Planar mapping

  Like projections, drop z coord (s,t) = (x,y)

  Problems: what happens near z = 0?

Cylindrical Mapping

  Cylinder: r, θ, z with (s,t) = (θ/(2π),z)
  Note seams when wrapping around (θ = 0 or 2π)

Spherical Mapping

  Convert to spherical coordinates: use latitude/long.
  Singularities at north and south poles

Cube Mapping

Cube Mapping Outline

  Types of projections

  Interpolating texture coordinates

  Broader use of textures

4

1st idea: Gouraud interp. of texcoords

Scan line

 I1

 I2

 I3

 y1

 y2

 y3

 ys
 Ia Ib

Ia =

I1(ys − y2)+ I2(y1 − ys)
y1 − y2

Ia =

I1(ys − y3)+ I3(y1 − ys)
y1 − y3

Ia =

Ia (xb − xp)+ Ib(xp − xa)
xb − xa

I p

Actual implementation efficient: difference
equations while scan converting

Artifacts

  McMillan’s demo of this is at
http://graphics.lcs.mit.edu/classes/6.837/F98/Lecture21/Slide05.html

  Another example
 http://graphics.lcs.mit.edu/classes/6.837/F98/Lecture21/Slide06.html

  What artifacts do you see?

  Why?

  Why not in standard Gouraud shading?

  Hint: problem is in interpolating parameters

Interpolating Parameters

  The problem turns out to be fundamental to
interpolating parameters in screen-space
  Uniform steps in screen space uniform steps in world space

Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42

Interpolating Parameters

  Perspective foreshortening is not getting applied to
our interpolated parameters
  Parameters should be compressed with distance
  Linearly interpolating them in screen-space doesn’t do this

Perspective-Correct Interpolation

  Skipping a bit of math to make a long story short…
  Rather than interpolating u and v directly, interpolate u/z

and v/z
  These do interpolate correctly in screen space
  Also need to interpolate z and multiply per-pixel

  Problem: we don’t know z anymore
  Solution: we do know w ~ 1/z
  So…interpolate uw and vw and w, and compute

u = uw/w and v = vw/w for each pixel
  This unfortunately involves a divide per pixel

  http://graphics.lcs.mit.edu/classes/6.837/F98/Lecture21/Slide14.html

5

Texture Map Filtering

  Naive texture mapping aliases badly

  Look familiar?
 int uval = (int) (u * denom + 0.5f);
 int vval = (int) (v * denom + 0.5f);
 int pix = texture.getPixel(uval, vval);

  Actually, each pixel maps to a region in texture
  |PIX| < |TEX|

  Easy: interpolate (bilinear) between texel values
  |PIX| > |TEX|

  Hard: average the contribution from multiple texels
  |PIX| ~ |TEX|

  Still need interpolation!

Mip Maps

  Keep textures prefiltered at multiple resolutions
  For each pixel, linearly interpolate between

two closest levels (e.g., trilinear filtering)
  Fast, easy for hardware

  Why “Mip” maps?

MIP-map Example

  No filtering:

  MIP-map texturing:

�
�
�
�
�
�
�

AAAAAAAGH�
MY EYES ARE BURNING�

�
�
�
�
�
�
�

Where are my glasses?�

Outline

  Types of projections

  Interpolating texture coordinates

  Broader use of textures

Texture Mapping Applications

  Modulation, light maps

  Bump mapping

  Displacement mapping

  Illumination or Environment Mapping

  Procedural texturing

  And many more

Modulation textures

)))()(((),(SSTTL LL
n

SDAAE IKIKISRVKLNKIKItsTI +++++= ∑

Map texture values to scale factor

W
oo

d
te

xt
ur

e

Texture
value

6

Bump Mapping

  Texture = change in surface normal!

Sphere w/ diffuse texture Swirly bump map Sphere w/ diffuse texture
and swirly bump map

Displacement Mapping

Illumination Maps
  Quake introduced illumination maps or light

maps to capture lighting effects in video games
Texture map:

Texture map
+ light map:

Light map

Environment Maps

Images from Illumination and Reflection Maps:
 Simulated Objects in Simulated and Real Environments
Gene Miller and C. Robert Hoffman
SIGGRAPH 1984 “Advanced Computer Graphics Animation” Course Notes

Solid textures
Texture values indexed

by 3D location (x,y,z)
  Expensive storage, or

  Compute on the fly,
e.g. Perlin noise 

Procedural Texture Gallery

7

