Foundations of Computer Graphics (Spring 2012)

CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184

Many slides courtesy Pat Hanrahan

Overview

- Lighting and shading key in computer graphics
- HW 2 etc. ad-hoc shading models, no units
- Really, want to match physical light reflection
- Next 3 lectures look at this formally
- Today: physical measurement of light: radiometry
- Formal reflection equation, reflectance models
- Global Illumination (later)

Radiometry and Photometry

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
- Radiant Power
- Radiant Intensity
- Irradiance
- Inverse square and cosine law
- Radiance
- Radiant Exitance (Radiosity)
- Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
- Reflection Equation

Light Source Goniometric Diagrams

Radiometry and Photometry

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
- Radiant Power
- Radiant Intensity
- Irradiance
- Inverse square and cosine law
- Radiance
- Radiant Exitance (Radiosity)
- Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
- Reflection Equation

Lambert's Cosine Law

Irradiance: Isotropic Point Source
$I d \omega=\frac{\Phi}{4 \pi} \frac{\cos \theta}{r^{2}} d A=E d A$
$E=\frac{\Phi}{4 \pi} \frac{\cos \theta}{r^{2}}$
Cssass Lecture 4

The	
	Bouguer's classic experiment Compare a light source and a candle Move until they both appear equally bright Intensity is proportional to ratio of distances squared Definition of a candela Originally a "standard" candle - Currently 550 nm laser w/ 1/683 W/sr - 1 of 6 fundamental SI units
Cs348B Lecture 4	Pat Henrahan, spring 20

Typical Values of Illuminance [lm/m$\left.{ }^{2}\right]$	
Sunlight plus skylight	100,000 lux
Sunlight plus skylight (overcast)	10,000
Interior near window (daylight)	1,000
Artificial light (minimum)	100
Moonlight (full)	0.02
Starlight	0.0003
cs348B Lecture 4	

Radiometry and Photometry

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
- Radiant Power
- Radiant Intensity
- Irradiance
- Inverse square and cosine law
- Radiance
- Radiant Exitance (Radiosity)
- Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
- Reflection Equation

Radiance

- Power per unit projected area perpendicular to the ray per unit solid angle in the direction of the ray
- Symbol: $L(x, \omega)\left(W / m^{2}\right.$ sr)
- Flux given by $d \Phi=L(x, \omega) \cos \theta d \omega d A$

Typical Values of Luminance [cd/m²]	
Surface of the sun	$2,000,000,000$ nit
Sunlight clouds	30,000
Clear sky	3,000
Overcast sky	300
Moon	0.03
cssase Lecture 4	

Radiance properties

- Sensor response proportional to radiance (constant of proportionality is throughput)
- Far surface: See more, but subtend smaller angle
- Wall equally bright across viewing distances

Consequences

- Radiance associated with rays in a ray tracer
- Other radiometric quants derived from radiance

Quiz

Does the brightness that a wall appears to the eye depend on the distance of the viewer to the wall?

C5348B Lecture 4

Irradiance, Radiosity

- Irradiance E is radiant power per unit area
- Integrate incoming radiance over hemisphere
- Projected solid angle ($\cos \theta \mathrm{d} \omega$)
- Uniform illumination: Irradiance $=\pi$ [CW 24,25]
- Units: W/m²

- Power per unit area leaving surface (like irradiance)

Uniform Area Source

CS348B Lecture 5
Pat Hanrahan, 2009

Uniform Disk Source

Geometric Derivation
Algebraic Derivation

$\tilde{\Omega}=\pi \sin ^{2} \alpha$
CS348B Lecture 5

$$
\begin{aligned}
\tilde{\Omega} & =\int_{1}^{\cos \alpha} \int_{0}^{2 \pi} \cos \theta d \phi d \cos \theta \\
& =\left.2 \pi \frac{\cos ^{2} \theta}{2}\right|_{1} ^{\cos \alpha} \\
& =\pi \sin ^{2} \alpha \\
& =\pi \frac{r^{2}}{r^{2}+h^{2}}
\end{aligned}
$$

Radiant Exitance

Definition: The radiant (Iuminous) exitance is the energy per unit area leaving a surface.

$$
\begin{gathered}
M(x) \equiv \frac{d \Phi_{o}}{d A} \\
{\left[\frac{W}{m^{2}}\right]\left[\frac{l m}{m^{2}}=l u x\right]}
\end{gathered}
$$

In computer graphics, this quantity is often referred to as the radiosity (B)

Cs348B Lecture 4 Pat Hanrahan, Spring 2011

Radiometry and Photometry

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
- Radiant Power
- Radiant Intensity
- Irradiance
- Inverse square and cosine law
- Radiance
- Radiant Exitance (Radiosity)
- Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
- Reflection Equation

Building up the BRDF

- Bi-Directional Reflectance Distribution Function [Nicodemus 77]
- Function based on incident, view direction
- Relates incoming light energy to outgoing
- Unifying framework for many materials

BRDF

- Reflected Radiance proportional Irradiance
- Constant proportionality: BRDF
- Ratio of outgoing light (radiance) to incoming light (irradiance)
- Bidirectional Reflection Distribution Function
- (4 Vars) units $1 / \mathrm{sr}$

$$
\begin{aligned}
& f\left(\omega_{i}, \omega_{r}\right)=\frac{L_{r}\left(\omega_{r}\right)}{L_{i}\left(\omega_{i}\right) \cos \theta \theta_{d} d \omega_{i}} \\
& L_{r}\left(\omega_{r}\right)=L_{(}\left(\omega_{i}\right) f\left(\omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
\end{aligned}
$$

The BRDF

Bidirectional Reflectance-Distribution Function

Properties of BRDF's

1. Linearity

From Sillion, Arvo, Westin, Greenberg
2. Reciprocity principle

CS348B Lecture 10
Pat Hanrahan, Spring 2009

Properties of BRDF's

3. Isotropic vs. anisotropic
$f_{r}\left(\theta_{i}, \varphi_{i} ; \theta_{r}, \varphi_{r}\right)=f_{r}\left(\theta_{i}, \theta_{r}, \varphi_{r}-\varphi_{i}\right)$

Reciprocity and isotropy

$$
f_{r}\left(\theta_{i}, \theta_{r}, \varphi_{r}-\varphi_{i}\right)=f_{r}\left(\theta_{r}, \theta_{i}, \varphi_{i}-\varphi_{r}\right)=f_{r}\left(\theta_{i}, \theta_{r}, \mid \varphi_{r}-\varphi_{i}\right)
$$

4. Energy conservation

CS348B Lecture 10
Pat Hanrahan, Spring 2009

Radiometry and Photometry

- Physical measurement of electromagnetic energy
- Measure spatial (and angular) properties of light
- Radiant Power
- Radiant Intensity
- Irradiance
- Inverse square and cosine law
- Radiance
- Radiant Exitance (Radiosity)
- Reflection functions: Bi-Directional Reflectance Distribution Function or BRDF
- Reflection Equation (and simple BRDF models)

Isotropic vs Anisotropic

- Isotropic: Most materials (you can rotate about normal without changing reflections)
- Anisotropic: brushed metal etc. preferred tangential direction

Isotropic

Anisotropic

Energy Conservation

$$
\frac{d \Phi_{r}}{d \Phi_{i}}=\frac{\int_{\Omega_{r}} L_{r}\left(\omega_{r}\right) \cos \theta_{r} d \omega_{r}}{\int_{\Omega_{i}} L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i}}
$$

$$
=\frac{\iint_{\Omega_{,} \Omega_{i}} f_{r}\left(\omega_{i} \rightarrow \omega_{r}\right) L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i} \cos \theta_{r} d \omega_{r}}{\int_{\Omega_{i}} L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i}}
$$

$$
\leq 1
$$

Ideal Diffuse Reflection

Assume light is equally likely to be reflected in any output direction (independent of input

$$
\begin{aligned}
L_{r, d}\left(\omega_{r}\right) & =\int f_{r, d} L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
& =f_{r d} \int L_{i}\left(\omega_{i}\right) \cos \theta_{i} d \omega_{i} \\
& =f_{r d} E
\end{aligned}
$$

$M=\int L_{r}\left(\omega_{r}\right) \cos \theta_{r} d \omega_{r}=L_{r} \int \cos \theta_{r} d \omega_{r}=\pi L_{r}$
$\rho_{d}=\frac{M}{E}=\frac{\pi L_{r}}{E}=\frac{\pi f_{r, d} E}{E}=\pi f_{r, d} \Rightarrow f_{r, d}=\frac{\rho_{d}}{\pi}$
Lambert's Cosine Law $M=\rho_{d} E=\rho_{d} E, \cos \theta$,
CS348B Lecture 10
Pat Hanrohan, Spring 2002

BRDF Viewer plots

Anisotropic

Phong Model

Reciprocity: $(\hat{\mathbf{E}} \bullet \mathbf{R}(\hat{\mathbf{L}}))^{\boldsymbol{s}}=(\hat{\mathbf{L}} \bullet \mathbf{R}(\hat{\mathbf{E}}))^{\boldsymbol{x}}$

Distributed light source!
CS3488 Lecture 10 Pat Hanrahan, Spring 2002

Analytical BRDF: TS example

One famous analytically derived BRDF is the Torrance-Sparrow model

T-S is used to model specular surface, like Phong

- more accurate than Phong
- has more parameters that can be set to match different materials
- derived based on assumptions of underlying geometry. (instead of 'because it works well')

Torrance-Sparrow

- Assume the surface is made up grooves at microscopic level.

Assume the faces of these grooves (called microfacets) are perfect reflectors.

- Take into account 3 phenomena

Other BRDF models

- Empirical: Measure and build a 4D table
- Anisotropic models for hair, brushed steel
- Cartoon shaders, funky BRDFs
- Capturing spatial variation
- Very active area of research

