Foundations of Computer Graphics (Spring 2012)

CS 184, Lecture 3: Transformations 1

http://inst.eecs.berkeley.edu/~cs184

To Do

- Submit HW 0
- Start looking at HW 1 (simple, but need to think)
- Axis-angle rotation and gluLookAt most useful (essential?). These are not covered in text (look at slides).
- Probably only need final results, but try understanding derivations.
- Problems in text help understanding material. Usually, we have review sessions per unit, but this one before midterm

Course Outline

- 3D Graphics Pipeline

Unit 1: Transformations
Resizing and placing objects in the
world. Creating perspective images.
Weeks 1 and 2
Ass 1 due Feb 9 (DEMO)

(Motivation
- Many different coordinate systems in graphics
- World, model, body, arms, ...
- To relate them, we must transform between them
- Also, for modeling objects. I have a teapot, but
- Want to place it at correct location in the world
- Want to view it from different angles (HW 1)
- Want to scale it to make it bigger or smaller
- This unit is about the math for doing all these things
" Represent transformations using matrices and matrix-
vector multiplications.
- Demo: HW 1, applet

General Idea

- Object in model coordinates
- Transform into world coordinates
- Represent points on object as vectors
- Multiply by matrices
- Demos with applet
- Chapter 6 in text. We cover most of it essentially as in the book. Worthwhile (but not essential) to read whole chapter

Outline

- 2D transformations: rotation, scale, shear
- Composing transforms
- 3D rotations
- Translation: Homogeneous Coordinates (next time)
- Transforming Normals (next time)

Outline

Composing Transforms

- Often want to combine transforms
- E.g. first scale by 2, then rotate by 45 degrees
" Advantage of matrix formulation: All still a matrix
- Not commutative!! Order matters
E.g. Composing rotations, scales

$$
\begin{array}{ll}
x_{3}=R x_{2} & x_{2}=S x_{1} \\
x_{3}=R\left(S x_{1}\right)=(R S) x_{1} \\
x_{3} \neq S R x_{1}
\end{array}
$$

Outline

- 2D transformations: rotation, scale, shear
- Composing transforms
- 3D rotations
- Translation: Homogeneous Coordinates
- Transforming Normals
Review of 2D case

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Orthogonal?, $R^{T} R=I$

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$
\begin{aligned}
R_{u w} & =\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right) \quad u=x_{u} X+y_{u} Y+z_{u} Z \\
R p & =\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right)\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right)=?\left(\begin{array}{l}
u \bullet p \\
v \bullet p \\
w \bullet p
\end{array}\right)
\end{aligned}
$$

Geometric Interpretation 3D Rotations

$$
R p=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right)\left(\begin{array}{l}
x_{p} \\
y_{p} \\
z_{p}
\end{array}\right)=\left(\begin{array}{l}
u \bullet p \\
v \bullet p \\
w \bullet p
\end{array}\right)
$$

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors
- Effectively, projections of point into new coord frame
- New coord frame uvw taken to cartesian components xyz
- Inverse or transpose takes xyz cartesian to uvw

Non-Commutativity

- Not Commutative (unlike in 2D)!!
- Rotate by x , then y is not same as y then x
- Order of applying rotations does matter
- Follows from matrix multiplication not commutative - R1 * R2 is not the same as R2 * R1
- Demo: HW1, order of right or up will matter

Arbitrary rotation formula

- Rotate by an angle θ about arbitrary axis a
" Not in book. Homework 1: must rotate eye, up direction
- Somewhat mathematical derivation but useful formula
- Problem setup: Rotate vector by by θ about a
- Helpful to relate b to X, \mathbf{a} to Z, verify does right thing
- For HW1, you probably just need final formula

Axis-Angle formula

- Step 1: b has components parallel to a, perpendicular
- Parallel component unchanged (rotating about an axis leaves that axis unchanged after rotation, e.g. rot about z)
- Step 2: Define corthogonal to both \mathbf{a} and \mathbf{b}
- Analogous to defining Y axis
- Use cross products and matrix formula for that
- Step 3: With respect to the perpendicular comp of b
- Cos θ of it remains unchanged
- $\operatorname{Sin} \theta$ of it projects onto vector \mathbf{c}
- Verify this is correct for rotating X about Z
- Verify this is correct for θ as 0,90 degrees

Axis-Angle: Putting it together

$$
\begin{aligned}
(b \backslash a)_{R O T} & =\left(I_{3 \times 3} \cos \theta-a a^{T} \cos \theta\right) b+\left(A^{*} \sin \theta\right) b \\
(b \rightarrow a)_{R O T} & =\left(a a^{T}\right) b \\
R(a, \theta) & =I_{3 \times 3} \cos \theta+a a^{T}(1-\cos \theta)+A^{*} \sin \theta \\
\text { Unchanged } & \text { Component }
\end{aligned}
$$ (hence unchanged)

