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Foundations of Computer Graphics Foundations of Computer Graphics 
(Spring 2012)(Spring 2012)

CS 184, Lecture 3: Transformations 1

http://inst.eecs.berkeley.edu/~cs184

To DoTo Do

 Submit HW 0

 Start looking at HW 1 (simple, but need to think)
 Axis-angle rotation  and gluLookAt most useful (essential?).  

These are not covered in text (look at slides).
 Probably only need final results, but try understanding 

derivations.  

 Problems in text help understanding material.  Usually, we 
have review sessions per unit, but this one before midterm

Course OutlineCourse Outline

 3D Graphics Pipeline

Modeling Animation Rendering

Course OutlineCourse Outline

 3D Graphics Pipeline

Unit 1: Transformations
Resizing and placing objects in the
world.  Creating perspective images.
Weeks 1 and 2 
Ass 1 due Feb 9 (DEMO)  

Modeling Animation Rendering

MotivationMotivation

 Many different coordinate systems in graphics
 World, model, body, arms, …

 To relate them, we must transform between them

 Also, for modeling objects.  I have a teapot, but
 Want to place it at correct location in the world
 Want to view it from different angles (HW 1)
 Want to scale it to make it bigger or smaller

MotivationMotivation

 Many different coordinate systems in graphics
 World, model, body, arms, …

 To relate them, we must transform between them

 Also, for modeling objects.  I have a teapot, but
 Want to place it at correct location in the world
 Want to view it from different angles (HW 1)
 Want to scale it to make it bigger or smaller

 This unit is about the math for doing all these things
 Represent transformations using matrices and matrix-

vector multiplications.  

 Demo: HW 1, applet transformation_game.jar
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General IdeaGeneral Idea

 Object in model coordinates

 Transform into world coordinates

 Represent points on object as vectors

 Multiply by matrices

 Demos with applet

 Chapter 6 in text.  We cover most of it essentially as in the 
book.  Worthwhile (but not essential) to read whole chapter

OutlineOutline

 2D transformations: rotation, scale, shear

 Composing transforms

 3D rotations

 Translation: Homogeneous Coordinates (next time)

 Transforming Normals (next time)
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RotationsRotations

2D simple, 3D complicated.  [Derivation? Examples?]

2D?

 Linear

 Commutative

' cos sin

' sin cos

x x

y y

 
 

     
     

     
R(X+Y)=R(X)+R(Y)

transformation_game.jar
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 2D transformations: rotation, scale, shear

 Composing transforms

 3D rotations

 Translation: Homogeneous Coordinates

 Transforming Normals
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Composing TransformsComposing Transforms

 Often want to combine transforms

 E.g. first scale by 2, then rotate by 45 degrees

 Advantage of matrix formulation: All still a matrix

 Not commutative!!  Order matters

E.g. Composing rotations, scalesE.g. Composing rotations, scales

3 2 2 1

3 1 1

3 1

( ) ( )

x Rx x Sx

x R Sx RS x

x SRx
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 


transformation_game.jar

Inverting Composite TransformsInverting Composite Transforms

 Say I want to invert a combination of 3 transforms

 Option 1: Find composite matrix, invert

 Option 2: Invert each transform and swap order

 Obvious from properties of matrices
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 2D transformations: rotation, scale, shear

 Composing transforms

 3D rotations

 Translation: Homogeneous Coordinates

 Transforming Normals

RotationsRotations

Review of 2D case

 Orthogonal?, 

' cos sin

' sin cos
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Rotations in 3D Rotations in 3D 

 Rotations about coordinate axes simple

 Always linear, orthogonal
 Rows/cols orthonormal

TR R I
R(X+Y)=R(X)+R(Y)
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Geometric Interpretation 3D RotationsGeometric Interpretation 3D Rotations

 Rows of matrix are 3 unit vectors of new coord frame

 Can construct rotation matrix from 3 orthonormal vectors

u u u

uvw v v v u u u
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R x y z u x X y Y z Z
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Geometric Interpretation 3D RotationsGeometric Interpretation 3D Rotations

 Rows of matrix are 3 unit vectors of new coord frame

 Can construct rotation matrix from 3 orthonormal vectors

 Effectively, projections of point into new coord frame

 New coord frame uvw taken to cartesian components xyz

 Inverse or transpose takes xyz cartesian to uvw
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NonNon--CommutativityCommutativity

 Not Commutative (unlike in 2D)!!

 Rotate by x, then y is not same as y then x

 Order of applying rotations does matter

 Follows from matrix multiplication not commutative
 R1 * R2 is not the same as R2 * R1

 Demo: HW1, order of right or up will matter

Arbitrary rotation formulaArbitrary rotation formula

 Rotate by an angle θ about arbitrary axis a
 Not in book. Homework 1: must rotate eye, up direction
 Somewhat mathematical derivation but useful formula

 Problem setup: Rotate vector b by θ about a

 Helpful to relate b to X, a to Z, verify does right thing

 For HW1, you probably just need final formula

AxisAxis--Angle formulaAngle formula

 Step 1: b has components parallel to a, perpendicular
 Parallel component unchanged (rotating about an axis 

leaves that axis unchanged after rotation, e.g. rot about z)

 Step 2: Define c orthogonal to both a and b
 Analogous to defining Y axis
 Use cross products and matrix formula for that

 Step 3: With respect to the perpendicular comp of b
 Cos θ of it remains unchanged
 Sin θ of it projects onto vector c
 Verify this is correct for rotating X about Z
 Verify this is correct for θ as 0, 90 degrees

AxisAxis--Angle: Putting it togetherAngle: Putting it together

*
3 3( \ ) ( cos cos ) ( sin )T

ROTb a I aa b A b    

( ) ( )T
ROTb a aa b 

*
3 3( , ) cos (1 cos ) sinTR a I aa A      

Unchanged
(cosine)

Component
along a  

(hence unchanged)

Perpendicular
(rotated comp)
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AxisAxis--Angle: Putting it togetherAngle: Putting it together

*
3 3( \ ) ( cos cos ) ( sin )T

ROTb a I aa b A b    

( ) ( )T
ROTb a aa b 

*
3 3( , ) cos (1 cos ) sinTR a I aa A      
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(x y z) are cartesian components of a


