
1

Foundations of Computer Graphics Foundations of Computer Graphics
(Spring 2012)(Spring 2012)

CS 184, Lecture 3: Transformations 1

http://inst.eecs.berkeley.edu/~cs184

To DoTo Do

 Submit HW 0

 Start looking at HW 1 (simple, but need to think)
 Axis-angle rotation and gluLookAt most useful (essential?).

These are not covered in text (look at slides).
 Probably only need final results, but try understanding

derivations.

 Problems in text help understanding material. Usually, we
have review sessions per unit, but this one before midterm

Course OutlineCourse Outline

 3D Graphics Pipeline

Modeling Animation Rendering

Course OutlineCourse Outline

 3D Graphics Pipeline

Unit 1: Transformations
Resizing and placing objects in the
world. Creating perspective images.
Weeks 1 and 2
Ass 1 due Feb 9 (DEMO)

Modeling Animation Rendering

MotivationMotivation

 Many different coordinate systems in graphics
 World, model, body, arms, …

 To relate them, we must transform between them

 Also, for modeling objects. I have a teapot, but
 Want to place it at correct location in the world
 Want to view it from different angles (HW 1)
 Want to scale it to make it bigger or smaller

MotivationMotivation

 Many different coordinate systems in graphics
 World, model, body, arms, …

 To relate them, we must transform between them

 Also, for modeling objects. I have a teapot, but
 Want to place it at correct location in the world
 Want to view it from different angles (HW 1)
 Want to scale it to make it bigger or smaller

 This unit is about the math for doing all these things
 Represent transformations using matrices and matrix-

vector multiplications.

 Demo: HW 1, applet transformation_game.jar

2

General IdeaGeneral Idea

 Object in model coordinates

 Transform into world coordinates

 Represent points on object as vectors

 Multiply by matrices

 Demos with applet

 Chapter 6 in text. We cover most of it essentially as in the
book. Worthwhile (but not essential) to read whole chapter

OutlineOutline

 2D transformations: rotation, scale, shear

 Composing transforms

 3D rotations

 Translation: Homogeneous Coordinates (next time)

 Transforming Normals (next time)

((NonuniformNonuniform) Scale) Scale

1
1

1

0 0
(,)

0 0
x x

x y
y y

s s
Scale s s S

s s






  
         

0 0

0 0

0 0

x x

y y

z z

s x s x

s y s y

s z s z

    
        
    
    

transformation_game.jar

ShearShear

11 1

0 1 0 1

a a
Shear S    

    
   

RotationsRotations

2D simple, 3D complicated. [Derivation? Examples?]

2D?

 Linear

 Commutative

' cos sin

' sin cos

x x

y y

 
 

     
     

     
R(X+Y)=R(X)+R(Y)

transformation_game.jar

OutlineOutline

 2D transformations: rotation, scale, shear

 Composing transforms

 3D rotations

 Translation: Homogeneous Coordinates

 Transforming Normals

3

Composing TransformsComposing Transforms

 Often want to combine transforms

 E.g. first scale by 2, then rotate by 45 degrees

 Advantage of matrix formulation: All still a matrix

 Not commutative!! Order matters

E.g. Composing rotations, scalesE.g. Composing rotations, scales

3 2 2 1

3 1 1

3 1

() ()

x Rx x Sx

x R Sx RS x

x SRx

 

 


transformation_game.jar

Inverting Composite TransformsInverting Composite Transforms

 Say I want to invert a combination of 3 transforms

 Option 1: Find composite matrix, invert

 Option 2: Invert each transform and swap order

 Obvious from properties of matrices

1 2 3

1 1 1 1
3 2 1

1 1 1 1
3 2 1 1 2 3(())

M M M M

M M M M

M M M M M M M M

   

   






transformation_game.jar

OutlineOutline

 2D transformations: rotation, scale, shear

 Composing transforms

 3D rotations

 Translation: Homogeneous Coordinates

 Transforming Normals

RotationsRotations

Review of 2D case

 Orthogonal?,

' cos sin

' sin cos

x x

y y

 
 

     
     

     

TR R I

Rotations in 3D Rotations in 3D

 Rotations about coordinate axes simple

 Always linear, orthogonal
 Rows/cols orthonormal

TR R I
R(X+Y)=R(X)+R(Y)

cos sin 0 1 0 0

sin cos 0 0 cos sin

0 0 1 0 sin cos

cos 0 sin

0 1 0

sin 0 cos

z x

y

R R

R

 
   

 

 

 

   
        
   
   
 
   
  

4

Geometric Interpretation 3D RotationsGeometric Interpretation 3D Rotations

 Rows of matrix are 3 unit vectors of new coord frame

 Can construct rotation matrix from 3 orthonormal vectors

u u u

uvw v v v u u u

w w w

x y z

R x y z u x X y Y z Z

x y z

 
     
 
 

?
u u u p

v v v p

w w w p

x y z x

Rp x y z y

x y z z

  
     

    

u p

v p

w p

 
  
  

Geometric Interpretation 3D RotationsGeometric Interpretation 3D Rotations

 Rows of matrix are 3 unit vectors of new coord frame

 Can construct rotation matrix from 3 orthonormal vectors

 Effectively, projections of point into new coord frame

 New coord frame uvw taken to cartesian components xyz

 Inverse or transpose takes xyz cartesian to uvw

u u u p

v v v p

w w w p

x y z x u p

Rp x y z y v p

x y z z w p

     
          

         

NonNon--CommutativityCommutativity

 Not Commutative (unlike in 2D)!!

 Rotate by x, then y is not same as y then x

 Order of applying rotations does matter

 Follows from matrix multiplication not commutative
 R1 * R2 is not the same as R2 * R1

 Demo: HW1, order of right or up will matter

Arbitrary rotation formulaArbitrary rotation formula

 Rotate by an angle θ about arbitrary axis a
 Not in book. Homework 1: must rotate eye, up direction
 Somewhat mathematical derivation but useful formula

 Problem setup: Rotate vector b by θ about a

 Helpful to relate b to X, a to Z, verify does right thing

 For HW1, you probably just need final formula

AxisAxis--Angle formulaAngle formula

 Step 1: b has components parallel to a, perpendicular
 Parallel component unchanged (rotating about an axis

leaves that axis unchanged after rotation, e.g. rot about z)

 Step 2: Define c orthogonal to both a and b
 Analogous to defining Y axis
 Use cross products and matrix formula for that

 Step 3: With respect to the perpendicular comp of b
 Cos θ of it remains unchanged
 Sin θ of it projects onto vector c
 Verify this is correct for rotating X about Z
 Verify this is correct for θ as 0, 90 degrees

AxisAxis--Angle: Putting it togetherAngle: Putting it together

*
3 3(\) (cos cos) (sin)T

ROTb a I aa b A b    

() ()T
ROTb a aa b 

*
3 3(,) cos (1 cos) sinTR a I aa A      

Unchanged
(cosine)

Component
along a

(hence unchanged)

Perpendicular
(rotated comp)

5

AxisAxis--Angle: Putting it togetherAngle: Putting it together

*
3 3(\) (cos cos) (sin)T

ROTb a I aa b A b    

() ()T
ROTb a aa b 

*
3 3(,) cos (1 cos) sinTR a I aa A      

2

2

2

1 0 0 0

(,) cos 0 1 0 (1 cos) sin 0

0 0 1 0

x xy xz z y

R a xy y yz z x

xz yz z y x

   
     
            

         

(x y z) are cartesian components of a

