
1

Foundations of Computer Graphics Foundations of Computer Graphics
(Spring 2012)(Spring 2012)

CS 184, Lecture 4: Transformations 2

http://inst.eecs.berkeley.edu/~cs184

To DoTo Do

 Turn in HW 0

 Start doing HW 1
 Time is short, but needs only little code [Due Thu Feb 9]
 Ask questions or clear misunderstandings by next lecture

 Specifics of HW 1
 Last lecture covered basic material on transformations in 2D

Likely need this lecture to understand full 3D transformations

 Last lecture had full derivation of 3D rotations. You only need
final formula

 gluLookAt derivation this lecture helps clarifying some ideas

 Read and post on newsgroup re questions

OutlineOutline

 Translation: Homogeneous Coordinates

 Combining Transforms: Scene Graphs

 Transforming Normals

 Rotations revisited: coordinate frames

 gluLookAt (quickly)

Exposition is slightly different than in the textbook

TranslationTranslation

 E.g. move x by +5 units, leave y, z unchanged

 We need appropriate matrix. What is it?

transformation_game.jar

' 5

' ?

'

x x x

y y y

z z z

      
             
      
      

Homogeneous CoordinatesHomogeneous Coordinates

 Add a fourth homogeneous coordinate (w=1)

 4x4 matrices very common in graphics, hardware

 Last row always 0 0 0 1 (until next lecture)

' 1 0 0 5 5

' 0 1 0 0

' 0 0 1 0

' 0 0 0 1 1 1

x x x

y y y

z z z

w

      
      
       
      
      
      

Representation of Points (4Representation of Points (4--Vectors)Vectors)

Homogeneous coordinates

 Divide by 4th coord (w) to get
(inhomogeneous) point

 Multiplication by w > 0, no effect

 Assume w ≥ 0. For w > 0, normal
finite point. For w = 0, point at infinity
(used for vectors to stop translation)

/

/

/

1

x x w

y y w
P

z z w

w

   
   
    
   
   
   

2

Advantages of Homogeneous Advantages of Homogeneous CoordsCoords

 Unified framework for translation, viewing, rot…

 Can concatenate any set of transforms to 4x4 matrix

 No division (as for perspective viewing) till end

 Simpler formulas, no special cases

 Standard in graphics software, hardware

General Translation MatrixGeneral Translation Matrix

3

1 0 0

0 1 0

0 0 1 0 1

0 0 0 1

x

y

z

T

T I T
T

T

 
          
 
 

1 0 0

0 1 0
'

0 0 1

0 0 0 1 1 1

x x

y y

z z

T x x T

T y y T
P TP P T

T z z T

    
            
    
    
    

Combining Translations, RotationsCombining Translations, Rotations

 Order matters!! TR is not the same as RT (demo)

 General form for rigid body transforms

 We show rotation first, then translation (commonly
used to position objects) on next slide. Slide after
that works it out the other way

simplestGlut.exe

transformation_game.jar

Combining Translations, RotationsCombining Translations, Rotations

' ()P TR P MP RP T   

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0 0

0 1 0 0

0 0 1 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1

x x

y y

z z

T R R R R R R T

T R R R R R R T R T
M

T R R R R R R T

     
                      
          
     

transformation_game.jar

Combining Translations, RotationsCombining Translations, Rotations

' () ()P RT P MP R P T RP RT     

11 12 13

3 3 3 3 3 121 22 23

1 331 32 33

0 1 0 0

0 0 1 0

0 10 0 0 1

0 0 0 1 0 0 0 1

x

y

z

R R R T

R R TR R R T
M

R R R T
  



   
                  
   

transformation_game.jar

OutlineOutline

 Translation: Homogeneous Coordinates

 Combining Transforms: Scene Graphs

 Transforming Normals

 Rotations revisited: coordinate frames

 gluLookAt (quickly)

Slides for this part courtesy Prof. O’Brien

3

Hierarchical Scene GraphHierarchical Scene Graph Drawing a Scene GraphDrawing a Scene Graph

 Draw scene with pre-and-post-order traversal
 Apply node, draw children, undo node if applicable

 Nodes can carry out any function
 Geometry, transforms, groups, color, …

 Requires stack to “undo” post children
 Transform stacks in OpenGL

 Caching and instancing possible

 Instances make it a DAG, not strictly a tree

Example SceneExample Scene--GraphsGraphs OutlineOutline

 Translation: Homogeneous Coordinates

 Combining Transforms: Scene Graphs

 Transforming Normals

 Rotations revisited: coordinate frames

 gluLookAt (quickly)

Exposition is slightly different than in the textbook

NormalsNormals

 Important for many tasks in graphics like lighting

 Do not transform like points e.g. shear

 Algebra tricks to derive correct transform
Incorrect to
transform
like points

Finding Normal TransformationFinding Normal Transformation

?t Mt n Qn Q  

0Tn t 

0T T Tn Q Mt Q M I  

1()TQ M 

4

OutlineOutline

 Translation: Homogeneous Coordinates

 Combining Transforms: Scene Graphs

 Transforming Normals

 Rotations revisited: coordinate frames

 gluLookAt (quickly)

Exposition is slightly different than in the textbook

Coordinate FramesCoordinate Frames

 All of discussion in terms of operating on points

 But can also change coordinate system

 Example, motion means either point moves
backward, or coordinate system moves forward

(2,1)P  ' (1,1)P  (1,1)P 

Coordinate Frames: In generalCoordinate Frames: In general

 Can differ both origin and orientation (e.g. 2 people)

 One good example: World, camera coord frames (H1)

o x

y e

u

v

World

Camera p

o 2x
0.9y

e

0.5u
0.6v

World

Camera p

Coordinate Frames: RotationsCoordinate Frames: Rotations

x

y

P

'P



cos sin

sin cos
R

 
 

 
  
 

P

 


v

u
cos sin

sin cos

u x

v y

 
 

     
    

     

OutlineOutline

 Translation: Homogeneous Coordinates

 Combining Transforms: Scene Graphs

 Transforming Normals

 Rotations revisited: coordinate frames

 gluLookAt (quickly)

Exposition is slightly different than in the textbook

Geometric Interpretation 3D RotationsGeometric Interpretation 3D Rotations

 Rows of matrix are 3 unit vectors of new coord frame

 Can construct rotation matrix from 3 orthonormal vectors

u u u

uvw v v v u u u

w w w

x y z

R x y z u x X y Y z Z

x y z

 
     
 
 

5

AxisAxis--Angle formula (summary)Angle formula (summary)

*
3 3(\) (cos cos) (sin)T

ROTb a I aa b A b    

() ()T
ROTb a aa b 

*
3 3(,) cos (1 cos) sinTR a I aa A      

2

2

2

1 0 0 0

(,) cos 0 1 0 (1 cos) sin 0

0 0 1 0

x xy xz z y

R a xy y yz z x

xz yz z y x

   
     
            

         

OutlineOutline

 Translation: Homogeneous Coordinates

 Combining Transforms: Scene Graphs

 Transforming Normals

 Rotations revisited: coordinate frames

 gluLookAt (quickly)

Not fully covered in textbooks. However, look at sections 6.5 and 7.2.1
We’ve already covered the key ideas, so we go over it quickly showing how things fit together

Case Study: Derive Case Study: Derive gluLookAtgluLookAt

Defines camera, fundamental to how we view images
 gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

 Camera is at eye, looking at center, with the up direction being up

 May be important for HW1

 Combines many concepts discussed in lecture

 Core function in OpenGL for later assignments

Eye

Up vector

Center

StepsSteps

 gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

 Camera is at eye, looking at center, with the up direction being up

 First, create a coordinate frame for the camera

 Define a rotation matrix

 Apply appropriate translation for camera (eye) location

Constructing a coordinate frame?Constructing a coordinate frame?

a
w

a


We want to associate w with a, and v with b
 But a and b are neither orthogonal nor unit norm
 And we also need to find u

b w
u

b w






v w u 

from lecture 2

Constructing a coordinate frameConstructing a coordinate frame

a
w

a


 We want to position camera at origin, looking down –Z dirn

 Hence, vector a is given by eye – center

 The vector b is simply the up vector

b w
u

b w





v w u 

Eye

Up vector

Center

6

StepsSteps

 gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

 Camera is at eye, looking at center, with the up direction being up

 First, create a coordinate frame for the camera

 Define a rotation matrix

 Apply appropriate translation for camera (eye) location

Geometric Interpretation 3D RotationsGeometric Interpretation 3D Rotations

 Rows of matrix are 3 unit vectors of new coord frame

 Can construct rotation matrix from 3 orthonormal vectors

u u u

uvw v v v u u u

w w w

x y z

R x y z u x X y Y z Z

x y z

 
     
 
 

StepsSteps

 gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

 Camera is at eye, looking at center, with the up direction being up

 First, create a coordinate frame for the camera

 Define a rotation matrix

 Apply appropriate translation for camera (eye) location

TranslationTranslation

 gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

 Camera is at eye, looking at center, with the up direction being up

 Cannot apply translation after rotation

 The translation must come first (to bring camera to
origin) before the rotation is applied

Combining Translations, RotationsCombining Translations, Rotations

' () ()P RT P MP R P T RP RT     

11 12 13

3 3 3 3 3 121 22 23

1 331 32 33

0 1 0 0

0 0 1 0

0 10 0 0 1

0 0 0 1 0 0 0 1

  



   
               
   
   

x

y

z

R R R T

R R TR R R T
M

R R R T

gluLookAtgluLookAt final formfinal form

   
      
   
   
   

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1 0 0 0 1

u u u x

v v v y

w w w z

x y z e

x y z e

x y z e

   
    
   
 
 0 0 0 1

u u u u x u y u z

v v v v x v y v z

w w w w x w y w z

x y z x e y e z e

x y z x e y e ze

x y z x e y e z e

