Foundations of Computer Graphics (Spring 2012)

CS 184, Lecture 4: Transformations 2
http://inst.eecs.berkeley.edu/~cs184

To Do

- Turn in HW 0
- Start doing HW 1
- Time is short, but needs only little code [Due Thu Feb 9]
- Ask questions or clear misunderstandings by next lecture
- Specifics of HW 1
- Last lecture covered basic material on transformations in 2D

Likely need this lecture to understand full 3D transformations

- Last lecture had full derivation of 3D rotations. You only need final formula
- gluLookAt derivation this lecture helps clarifying some ideas
- Read and post on newsgroup re questions

Translation

- E.g. move x by +5 units, leave y, z unchanged
- We need appropriate matrix. What is it?

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
x+5 \\
y \\
z
\end{array}\right)
$$

\qquad
" Add a fourth homogeneous coordinate (w=1)

- 4x4 matrices very common in graphics, hardware
- Last row always 0001 (until next lecture)

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
w^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+5 \\
y \\
z \\
1
\end{array}\right)
$$

Representation of Points (4-Vectors)

Homogeneous coordinates

- Multiplication by $w>0$, no effect ${\text {. Divide by } 4^{\text {th }} \text { coord }(w) \text { to get }}_{\text {(inhomogeneous) point }}^{\text {- }} \quad P=\left(\begin{array}{c}x \\ y \\ z \\ w\end{array}\right)=\left(\begin{array}{c}x / w \\ y / w \\ z / w \\ 1\end{array}\right)$
- Assume $w \geq 0$. For $w>0$, normal finite point. For $w=0$, point at infinity (used for vectors to stop translation)

Combining Translations, Rotations

- Order matters!! TR is not the same as RT (demo)
- General form for rigid body transforms
- We show rotation first, then translation (commonly used to position objects) on next slide. Slide after that works it out the other way
General Translation Matrix

$$
\begin{aligned}
T & =\left(\begin{array}{cccc}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
I_{3} & T \\
0 & 1
\end{array}\right) \\
P^{\prime}=T P & =\left(\begin{array}{llll}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+T_{x} \\
y+T_{y} \\
z+T_{z} \\
1
\end{array}\right)=P+T
\end{aligned}
$$

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
- gluLookAt (quickly)

Drawing a Scene Graph

- Draw scene with pre-and-post-order traversal
- Apply node, draw children, undo node if applicable
- Nodes can carry out any function
" Geometry, transforms, groups, color,
" Requires stack to "undo" post children
- Transform stacks in OpenGL
- Caching and instancing possible
- Instances make it a DAG, not strictly a tree

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
" gluLookAt (quickly)

Exposition is slightly different than in the textbook

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
" gluLookAt (quickly)

Exposition is slightly different than in the textbook

Coordinate Frames

- All of discussion in terms of operating on points
- But can also change coordinate system
- Example, motion means either point moves backward, or coordinate system moves forward

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$
R_{u v w}=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right) \quad u=x_{u} X+y_{u} Y+z_{u} z
$$

Case Study: Derive gluLookAt

Defines camera, fundamental to how we view images

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up

- Combines many concepts discussed in lecture
- Core function in OpenGL for later assignments

Outline

- Translation: Homogeneous Coordinates
- Combining Transforms: Scene Graphs
- Transforming Normals
- Rotations revisited: coordinate frames
" gluLookAt (quickly)

Steps

- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Constructing a coordinate frame?

We want to associate \mathbf{w} with \mathbf{a}, and \mathbf{v} with \mathbf{b}

- But a and b are neither orthogonal nor unit norm
- And we also need to find \mathbf{u}

$$
\begin{aligned}
w & =\frac{a}{\|a\|} \\
u & =\frac{b \times w}{\|b \times w\|} \\
v & =w \times u
\end{aligned}
$$

Constructing a coordinate frame

$$
w=\frac{a}{\|a\|} \quad u=\frac{b \times w}{\|b \times w\|} \quad v=w \times u
$$

- We want to position camera at origin, looking down -Z dirn
- Hence, vector a is given by eye - center
- The vector b is simply the up vector/ Up vector

Steps

Geometric Interpretation 3D Rotations

- Rows of matrix are 3 unit vectors of new coord frame
- Can construct rotation matrix from 3 orthonormal vectors

$$
R_{u w v}=\left(\begin{array}{lll}
x_{u} & y_{u} & z_{u} \\
x_{v} & y_{v} & z_{v} \\
x_{w} & y_{w} & z_{w}
\end{array}\right) \quad u=x_{u} X+y_{u} Y+z_{u} Z
$$

- Apply appropriate translation for camera (eye) location

Steps
- gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)
- Camera is at eye, looking at center, with the up direction being up
- First, create a coordinate frame for the camera
- Define a rotation matrix
- Apply appropriate translation for camera (eye) location

Translation

" gluLookAt(eyex, eyey, eyez, centerx, centery, centerz, upx, upy, upz)

- Camera is at eye, looking at center, with the up direction being up
- Cannot apply translation after rotation
- The translation must come first (to bring camera to origin) before the rotation is applied

Combining Translations, Rotations
$P^{\prime}=(R T) P=M P=R(P+T)=R P+R T$

$$
M=\left(\begin{array}{cccc}
R_{11} & R_{22} & R_{33} & 0 \\
R_{21} & R_{22} & R_{33} & 0 \\
R_{31} & R_{22} & R_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & T_{x} \\
0 & 1 & 0 & T_{y} \\
0 & 0 & 1 & T_{z} \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cc}
R_{33} & R_{33} T_{31} \\
0 & 1
\end{array}\right)
$$

gluLookAt final form

$\left(\begin{array}{cccc}x_{u} & y_{u} & z_{u} & 0 \\ x_{v} & y_{v} & z_{v} & 0 \\ x_{w} & y_{w} & z_{w} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & -e_{x} \\ 0 & 1 & 0 & -e_{y} \\ 0 & 0 & 1 & -e_{z} \\ 0 & 0 & 0 & 1\end{array}\right)$
$\left(\begin{array}{cccc}x_{u} & y_{u} & z_{u} & -x_{u} e_{x}-y_{u} e_{y}-z_{z} e_{z} \\ x_{v} & y_{v} & z_{v} & -x_{e_{e}} e_{x}-y_{v} e_{y}-z_{v} e_{z} \\ x_{w} & y_{w} & z_{w} & -x_{w} e_{x}-y_{w} e_{y}-z_{w} e_{z} \\ 0 & 0 & 0 & 1\end{array}\right)$

