
1

Foundations of Computer Graphics Foundations of Computer Graphics
(Spring 2012)(Spring 2012)

CS 184, Lecture 5: Viewing

http://inst.eecs.berkeley.edu/~cs184

To DoTo Do

 Questions/concerns about assignment 1?

 Remember it is due next Thu. Ask me or TAs re problems

MotivationMotivation

 We have seen transforms (between coord systems)

 But all that is in 3D

 We still need to make a 2D picture

 Project 3D to 2D. How do we do this?

 This lecture is about viewing transformations

Demo (Projection Tutorial)Demo (Projection Tutorial)

 Nate Robbins OpenGL
tutors

 Projection.exe

 Download others

What weWhat we’’ve seen so farve seen so far

 Transforms (translation, rotation, scale) as 4x4
homogeneous matrices

 Last row always 0 0 0 1. Last w component always 1

 For viewing (perspective), we will use that last row
and w component no longer 1 (must divide by it)

OutlineOutline

 Orthographic projection (simpler)

 Perspective projection, basic idea

 Derivation of gluPerspective (handout: glFrustum)
 In new OpenGL, glm macro glm::lookAt glm::Perspective

 Brief discussion of nonlinear mapping in z

Not well covered in textbook chapter 7. We follow section 3.5 of real-time rendering
most closely. Handouts on this will be given out.

2

ProjectionsProjections

 To lower dimensional space (here 3D -> 2D)

 Preserve straight lines

 Trivial example: Drop one coordinate (Orthographic)

Orthographic ProjectionOrthographic Projection

 Characteristic: Parallel lines remain parallel

 Useful for technical drawings etc.

Orthographic Perspective
Fig 7.1 in text

ExampleExample

 Simply project onto xy plane, drop z coordinate

In generalIn general

 We have a cuboid that we want to map to the
normalized or square cube from [-1, +1] in all axes

 We have parameters of cuboid (l,r ; t,b; n,f)

Orthographic MatrixOrthographic Matrix

 First center cuboid by translating

 Then scale into unit cube

Transformation MatrixTransformation Matrix

         
       

      
   

  
  

2
0 0 0 1 0 0

2
2

0 0 0 0 1 0
2

2
0 0 10 0 0

2
0 0 0 10 0 0 1

l r

r l
t b

M t b
f n

f n

Scale Translation (centering)

3

CaveatsCaveats

 Looking down –z, f and n are negative (n > f)

 OpenGL convention: positive n, f, negate internally

Final ResultFinal Result

2
0 0

2
0 0

2
0 0

0 0 0 1

r l

r l r l
t b

M t b t b
f n

f n f n

    
    

  
  
 
 

    
    

  
 








2
0 0

2
0 0

::
2

0 0

0 0 0 1

r l

r l r l
t b

glm ortho t b t b
f n

f n f n

OutlineOutline

 Orthographic projection (simpler)

 Perspective projection, basic idea

 Derivation of gluPerspective (handout: glFrustum)
 In modern OpenGL, glm::perspective

 Brief discussion of nonlinear mapping in z

Perspective ProjectionPerspective Projection

 Most common computer graphics, art, visual system

 Further objects are smaller (size, inverse distance)

 Parallel lines not parallel; converge to single point

B

A’

B’

Center of projection
(camera/eye location)

A
Plane of Projection

Pinhole CameraPinhole Camera

 Center of Projection (one point)

 Very common model in graphics
(but real cameras use lenses; a bit more complicated)

Perspective ProjectionPerspective Projection

 Foreshortening: Distant objects appear smaller

4

Overhead View of Our ScreenOverhead View of Our Screen

Looks like we’ve got some nice similar triangles here?

x x d x
x

z d z

    *y y d y
y

z d z


  

 , ,x y d 
 , ,x y z

d

 0,0,0

In MatricesIn Matrices

 Note negation of z coord (focal plane –d)

 (Only) last row affected (no longer 0 0 0 1)

 w coord will no longer = 1. Must divide at end

1 0 0 0

0 1 0 0

0 0 1 0

1
0 0 0

P

d

 
 
 

  
 
  
 

VerifyVerify

1 0 0 0

0 1 0 0
?0 0 1 0

1
10 0 0

x

y

z

d

                     

*

*

1

d x
x

z
y

d y
z z
z d
d

                         

Vanishing PointsVanishing Points

 Parallel lines “meet” at vanishing point

 (x,y) ~ (dx, dy) [directions]

 Every pixel vanishing pt for
some dirn (lines parallel to
image plane vanish infinity)

 Horizon

Perspective DistortionsPerspective Distortions

 Perspective can distort; artists often correct

 Computers can too (Zorin and Barr 95)

OutlineOutline

 Orthographic projection (simpler)

 Perspective projection, basic idea

 Derivation of gluPerspective (handout: glFrustum)

 Brief discussion of nonlinear mapping in z

5

Remember projection tutorialRemember projection tutorial Viewing FrustumViewing Frustum

Near plane

Far plane

Screen (Projection Plane)Screen (Projection Plane)

Field of view
(fovy)

width

height

Aspect ratio = width / height

gluPerspectivegluPerspective

 gluPerspective(fovy, aspect, zNear > 0, zFar > 0)

 Fovy, aspect control fov in x, y directions

 zNear, zFar control viewing frustum

Overhead View of Our ScreenOverhead View of Our Screen

 , ,x y d 
 , ,x y z

d

 0,0,0 1

? ?d  

cot
2

fovy
d  

In MatricesIn Matrices

 Simplest form:

 Aspect ratio taken into account

 Homogeneous, simpler to multiply through by d

 Must map z vals based on near, far planes (not yet)

1 0

1
0 0 0

0 1 0 0

0 0

1
0 0 0

aspect

P

d

 
 
 
 

  
 
 

 
 

6

In MatricesIn Matrices

 A and B selected to map n and f to -1, +1 respectively

1
0 0 0

0 0 0

0 1 0 0
0 0 0

0 0
0 0

1
0 0 1 00 0 0

1 0

d
aspect

aspec

A B

t

dP

d

                          

Z mapping derivationZ mapping derivation

 Simultaneous equations?

?
1 0 1

A B z  
    

Az B B
A

z z

 
    

1

1

B
A

n
B

A
f

   

   
2

f n
A

f n
fn

B
f n


 



 


OutlineOutline

 Orthographic projection (simpler)

 Perspective projection, basic idea

 Derivation of gluPerspective (handout: glFrustum)

 Brief discussion of nonlinear mapping in z

Mapping of Z is nonlinearMapping of Z is nonlinear

 Many mappings proposed: all have nonlinearities

 Advantage: handles range of depths (10cm – 100m)

 Disadvantage: depth resolution not uniform

 More close to near plane, less further away

 Common mistake: set near = 0, far = infty. Don’t do
this. Can’t set near = 0; lose depth resolution.

 We discuss this more in review session

Az B B
A

z z

 
    

Summary: The Whole Viewing PipelineSummary: The Whole Viewing Pipeline

Model
transformation

Camera
Transformation

(glm::lookAt)

Perspective
Transformation

(glm::perspective)

Viewport
transformation

Raster
transformation

Model coordinates

World coordinates

Eye coordinates

Screen coordinates

Window coordinates

Device coordinates

Slide courtesy Greg Humphreys

