Foundations of Computer Graphics
(Spring 2012)
CS 184, Lecture 5: Viewing
http://inst.eecs.berkeley.edu/~cs184

To Do

- Questions/concerns about assignment 1?
- Remember it is due next Thu. Ask me or TAs re problems

Motivation

- We have seen transforms (between coord systems)
- But all that is in 3D
- We still need to make a 2D picture
" Project 3D to 2D. How do we do this?
- This lecture is about viewing transformations

Demo (Projection Tutorial)

\qquad

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- In new OpenGL, glm macro glm::IookAt glm::Perspective
- Brief discussion of nonlinear mapping in z

Not well covered in textbook chapter 7. We follow section 3.5 of real-time rendering most closely. Handouts on this will be given out.

Orthographic Projection

In general

- We have a cuboid that we want to map to the normalized or square cube from $[-1,+1]$ in all axes
- We have parameters of cuboid (l,r ; t,b; n, f)

Final Result

Perspective Projection

- Most common computer graphics, art, visual system
- Further objects are smaller (size, inverse distance)
- Parallel lines not parallel; converge to single point

Center of projection
(camera/eye location)

Looks like we've got some nice similar triangles here?

$$
\frac{x}{z}=\frac{x^{\prime}}{d} \Rightarrow x^{\prime}=\frac{d * x}{z} \quad \frac{y}{z}=\frac{y^{\prime}}{d} \Rightarrow y^{\prime}=\frac{d^{*} y}{z}
$$

In Matrices

- Note negation of z coord (focal plane -d)
" (Only) last row affected (no longer 000 1)
- w coord will no longer $=1$. Must divide at end

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{d} & 0
\end{array}\right)
$$

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

gluPerspective

- gluPerspective(fovy, aspect, zNear >0, zFar > 0)
- Fovy, aspect control fov in x, y directions
- zNear, zFar control viewing frustum

" Aspect ratio taken into account
- Homogeneous, simpler to multiply through by d
- Must map z vals based on near, far planes (not yet)

- A and B selected to map n and f to $-1,+1$ respectively

Outline

- Orthographic projection (simpler)
- Perspective projection, basic idea
- Derivation of gluPerspective (handout: glFrustum)
- Brief discussion of nonlinear mapping in z

Z mapping derivation

$$
\left(\begin{array}{cc}
A & B \\
-1 & 0
\end{array}\right)\binom{z}{1}=? \quad\binom{A z+B}{-z}=-A-\frac{B}{z}
$$

- Simultaneous equations?

$$
\begin{array}{rlrl}
-A+\frac{B}{n} & =-1 & A & =-\frac{f+n}{f-n} \\
-A+\frac{B}{f} & =+1 & B & =-\frac{2 f n}{f-n}
\end{array}
$$

Mapping of \mathbf{Z} is nonlinear

$$
\binom{A z+B}{-z}=-A-\frac{B}{z}
$$

- Many mappings proposed: all have nonlinearities
- Advantage: handles range of depths (10cm - 100m)
- Disadvantage: depth resolution not uniform
- More close to near plane, less further away
" Common mistake: set near = 0, far = infty. Don't do this. Can't set near = 0; lose depth resolution.
- We discuss this more in review session

