Foundations of Computer Graphics
(Spring 2012)

CS 184, Lecture 7: OpenGL Shading
http://inst.eecs.berkeley.edu/~cs184

Methodology for Lecture

Lecture deals with lighting (DEMO for HW 2)

Briefly explain shaders used for mytest3
Do this before explaining code fully so you can start HW 2
Primarily explain with reference to source code

More formal look at lighting and shading later in class
Based on physical units and radiometry

Importance of Lighting

Important to bring out 3D appearance (compare
teapot now to in previous demo)

Important for correct shading under lights

The way shading is done also important
Flat: Entire face has single color (normal) from one vertex
Gouraud or smooth: Colors at each vertex, interpolate

glShadeModel(GL_FLAT) glShadeModel(GL_SMOOQOTH)

To Do

Submit HW 1 (due tomorrow)

Must include partners for HW 2 (speak with TA
to find partner if needed). HW 2 is more difficult

This week’s lectures should have all information

Start thinking about HW 3 (also groups of 2)

Demo for mytest3

Lighting on teapot ~ [Frm==r===
Blue, red highlights

Diffuse shading

Texture on floor

Update as we move

Brief primer on Color

Red, Green, Blue primary colors
Can be thought of as vertices of a color cube
R+G = Yellow, B+G = Cyan, B+R = Magenta,
R+G+B = White
Each color channel (R,G,B) treated separately

RGBA 32 bit mode (8 bits per channel) often used
A'is for alpha for transparency if you need it

Colors normalized to 0 to 1 range in OpenGL
Often represented as 0 to 255 in terms of pixel intensities

Also, color index mode (not so important)

More next week

Outline

Gouraud and Phong shading (vertex vs fragment)

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Gouraud Shading — Details
|2 h0e =¥2) (Vi —Ye)
: Yi=Ya
| b0 =Y+ —Ye)
° Y1=Ya
_ 1O = %) + 106 =X,)
- Xp = Xg
Scan line

Actual implementation efficient: difference
equations while scan converting

Phong lllumination Model

Specular or glossy materials: highlights
Polished floors, glossy paint, whiteboards
For plastics highlight is color of light source (not object)
For metals, highlight depends on surface color

Really, (blurred) reflections of light source

»O e

Roughness

Vertex vs Fragment Shaders

Can use vertex or fragment shaders for lighting

Vertex computations interpolated by rasterizing
Gouraud (smooth) shading, as in mytest1
Flat shading: no interpolation (single color of polygon)

Either compute colors at vertices, interpolate
This is standard in old-style OpenGL
Can be implemented with vertex shaders

Or interpolate normals etc. at vertices

And then shade at each pixel in fra?ment shader
Phong shading (different from Phong illumination)
More accurate

Wireframe: glPolygonMode (GL_FRONT, GL_LINE)

Also, polygon offsets to superimpose wireframe
Hidden line elimination? (polygons in black...)

Gouraud and Errors

I, = 0 because (N dot E) is negative.
I, = 0 because (N dot L) is negative.

Any interpolation of |; and I, will be 0.

area of
desired
highlight

2 Phongs make a Highlight

Besides the Phong lllumination or Reflectance model, there
is a Phong Shading model.

Phong Shading: Instead of interpolating the intensities
between vertices, interpolate the normals.

The entire lighting calculation is performed for each pixel,
based on the interpolated normal. (Old OpenGL doesn't do
this, but you can and will with current fragment shaders)

Examples and Color Plates Simple Vertex Shader in myte

version 120

See OpenGL color plates 1-8 and glsl book

o // out vec4 color ;

R n // out vec4 mynormal ;
. // out vec4 myvertex ;
- | // That is certainly more modern
. Yy

y varying vec4 color ;
. | / b '\’ varying vec3 mynormal ;
s 'd] varying vec4 myvertex ;
\ > W

// Mine is an old machine. For version 130 or higher, do

void main(Q) {

gl_TexCoord[0] = gl_MultiTexCoord0 ;

gl_Position = gl_ProjectionMatrix * gl_ModelViewMatrix * gl_Vertex ;
color

mynorma gl_Normal ;

myvertex = gl_Vertex ; }

http://blog.cryos.net/categories/15-Avogadro/P3.html
http://blenderartists.org/forum/showthread.php?11430-Games-amp-Tutorials-(updated-Jan-5-2011)

Outline Lighting and Shading

Gouraud and Phong shading (vertex vs fragment) Rest of this lecture considers lighting

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular We study this more formally later in class

In real world, complex lighting, materials interact

Fragment shader for mytest3 For now some basic approximations to capture

HW 2 requires a more general version of this key effects in lighting and shading
Source code in display routine Inspired by old OpenGL fixed function pipeline
But remember that's not physically based

Types of Light Sources Material Properties

Paint
Position,_ Color)

Attenuation (quadratic model) aen— 1 Need normals (to calculate how much diffuse,
X k, +kd +k,d o . .

Attenuation ° specular, find reflected direction and so on)
Usually assume no attenuation (not physically correct) Usually specify at each vertex, interpolate
Quadratic inverse square falloff for point sources GLUT does it automatically for teapots etc
Linear falloff fqr line sources (tube lights). Why? Can do manually for parametric surfaces
No falloff for distant (directional) sources. Why? Average face normals for more complex shapes

Directional (w=0, infinite far away, no attenuation)

Spotlights (not considered in homework) Four terms: Ambient, Diffuse, Specular, Emissive

Spot exponent
Spot cutoff

Emissive Term

e >

Yﬁ%{ | = Emission, ..
£

Only relevant for light sources when looking directly at them

» Gotcha: must create geometry to actually see light

« Emission does not in itself affect other lighting calculations

Diffuse Term

Rough matte (technically Lambertian) surfaces
Light reflects equally in all directions

N I~NelL

Specular Term

Glossy objects, specular reflections

Light reflects close to mirror direction

1t

Ambient Term

Hack to simulate multiple bounces, scattering of light

Assume light equally from all directions

Global constantvCA>

<
Never have L2554
. \'%
black pixels

| = Ambient

Diffuse Term

Rough matte (technically Lambertian) surfaces
Light reflects equally in all directions

N I~NelL

n
I = intensity,,, *diffuse,
i—0

*atten, *[max (L-N,0)]

‘material

Phong lllumination Model

Specular or glossy materials: highlights
Polished floors, glossy paint, whiteboards

For plastics highlight is color of light source (not object)

For metals, highlight depends on surface color

Really, (blurred) reflections of light source

Roughness

Idea of Phong lllumination Phong Formula
Find a simple way to create highlights that are view- | ~(RE)°
dependent and happen at about the right place
Not physically based

Use dot product (cosine) of eye and reflection of
light direction about surface normal

Alternatively, dot product of half angle and normal
Has greater physical backing. We use this form

Raise cosine lobe to some power to control
sharpness or roughness

Alternative: Half-Angle (Blinn-Phong) Demo in mytest3

I ~(NeH)? What happens when we make surface less shiny?

ETrrr———r—

N H

n
— 2 i i *
I = |ntenS|tyhg,“i specular
i=0

*atten, *[max (N o H, Q)Ffininess

material

Diffuse and specular components for most materials

Outline Fragment Shader Setup

version 120

Gouraud and Phong shading (vertex vs fragment)

Types Of ||ght|ng, materials and Shading ;; l:':nse(ij :zlz:d.machine. For version 130 or higher, do
Lights: Point and Directional // in veca mynQrm;| .
Shading: Ambient, Diffuse, Emissive, Specular // in vec4 myvertex ;
// That is certainly more modern
Fragment shader for mytest3
HW 2 requires a more general version of this attribute veca color ;
attribute vec3 mynormal ;

Source code in display routine attribute vec4 myvertex ;

uniform sampler2D tex ;
uniform int istex ;
uniform int islight ; // are we lighting.

Fragment Shader Variables

// Assume light O is directional, light 1 is a point light.

// Actual ght values are passed from the main OpenGL program.
// This could of course be fancier. Illustrates a simple idea.
uniform vec3 lightOdirn ;

vec4 lightlcolor ;

// Now, set the material parameters. These could be varying or

// bound to a buffer. But for now, | Jjust make them uniform.
// 1 use ambient ffuse, specular, sl ess as in OpenGl

// But, ambient is just additive and doesn”t multiply the lights.

vec4 ambient ;
vec4 diffuse ;

uniform vec4 specular ;
float sl

Fragment Shader Main Transform

void main (void) {
if (istex > 0) gl_FragColor = texture2D(tex, gl_TexCoord[0].st) ;
else if (islight == 0) gl_FragColor = color ;
else {
// They eye is always at (0,0,0) looking down -z axis
// Also compute current fragment posn, direction to eye
const vec3 eyepos = vec3(0,0,0) ;
vec4 _mypos = gl_ModelViewMatrix * myvertex ;
vec3 mypos = _mypos.xyz / _mypos.w ; // Dehomogenize
vec3 eyedirn = normalize(eyepos - mypos) ;
// Compute normal, needed for shading.
// Simpler is vec3 normal = normalize(gl_NormalMatrix * mynormal)

vec3 _normal =
(gl_Mode ewMatr nverseTranspose*vec4(mynormal ,0.0)).xyz ;

vec3 normal normalize(_normal) ;

Outline

Go d and Phong shading (vertex vs fragm

Types of lighting, materials and shading
Lights: Point and Directional
Shading: Ambient, Diffuse, Emissive, Specular

Fragment shader for mytest3
HW 2 requires a more general version of this

Source code in display routine

Fragment Shader Compute Lighting

vec4 Computel ht (const in vec3 direction, const in vec4

htcolor, const in vec3 normal, const in vec3 halfvec, const
n vec4 mydiffuse, const in vec4 myspecular, const in t
in

myshi

float nDotL = dot(normal, direction) ;
vec4 lambert = mydiffuse * lightcolor * max (nDotL, 0.0) ;

float nDotH = dot(normal, halfvec) ;

vec4 phon myspecular * lightco * pow (max(nDotH, 0.0
myshininess)

vecd retval lambert + phong ;
return retval

Fragment Shader Main Routine

Light 0, directi
vec3 rection0

, hormal,

vec3 htlposn.xyz / lightlposn.w ;
vec3 normalize (position - mypos) ; // no atten.
vec3 halfl = normalize (directionl + eyedirn)

vec4 coll = ComputeLight(ctionl, lightlco mal,
halfl, diffuse, specular, shininess) ;

gl_FragColor = ambient + col0 + coll ;

H

Light Set Up (in display)
/* New for Demo 3; add lighting effects */
{
const GLfloat one[] {1.1,1,1} ;
const GLfloat me m[] = {0.5, 0.5, 0.5, 1};
const GLfloat small[] = {0.2, 0.2, 0.2, 1};
const GLfloat high[] = {100} ;
const GLfloat zero[] = {0.0, 0.0, 0.0, 1.0} ;
const GLfloat light_specular[] = {1, 0.5, 0, 1};
const GLfloat light_speculari[] {0, 0.5, 1, 1};
const GLfloat light_direction[] {0.5, 0, 0, 0}; // Dir It
const i {0, -0.5, 0, 1};
GLfloat
// Set Light and Material properties for the teapot
// Lights are transformed by current modelview matrix.
// The shader can®t do this globally. So we do so manually.
transformvec(light_direction, light0)
transformvec(light_positionl, lightl)

Moving a Light Source Modelview Light Transform

Lights transform like other geometry Could also use GLM (but careful of conventions)

Only modelview matrix (n0t prOjeCtion)- The Only real /* New he_lper*/transformation function to transform vector by

application where the distinction is important LR L)
vm{d transformvec (const GLfloat input[4], GLfloat output[4])

Types of light motion

. . . o . GLfloat mode ew[16] ; // in column major order
Stationary: set the transforms to identity before specifying it

glGetFloatv(GL_MODELVIEW_MATRIX, modelview) ;
Moving light: Push Matrix, move light, Pop Matrix for (int i =0 i<4; i) {

. . . .) output[i] = 0 ;
Moving light source with viewpoint (attached to camera). for (int j =0 : j <4 : j+)
Can simply set light to 0 0 0 so origin wrt eye coords (make output[i] += modelview[4*j+i] * inpu
modelview matrix identity before doing this)

Set up Lighting for Shader Mappings in init

glUniform3fv(lightodirn, 1, ght0) ;
glUniformdfv(htOcolor, 1, light_specular) ; vertexshader shaders(GL_VERTEX_SHADER, *shaders/light.vert"
glUniformafv(lightlposn, 1 ghtl) ; fragmentshadef shaders(GL_FRAGMENT_SHADER, “shaders/light.frag

glUnifornafv(lighticolor, light specularl) shaderprogran = initprogram(vertexshader, fragmentshader) ;

// gluniform4fv(lighticolor, 1, zero) ;

gluniformafv(ambient,1,small) ; 1GetUniformLocation(shaderprogram
glUniformd4fv(diffuse,1,medium) ; ghtOcolor IGetUniformLocation(shaderprogram,
glUniform4fv(specular,1,one) ghtlposn = glGetUniformLocation(shaderprogram,"
glUniformifv(shininess,1,high) ; lightlcolor = glGetUniformLocation(shaderprogram,
ambient = glGetl ormLocation(shaderprogram,
diffuse = glGetUniformLocation(shaderprogram,

specular = glGetUniformLocation(shaderprogran
o Gamerllly, we wenld &l e o EEne memElS GE: shininess = glGetUnifornLocation(shaderprogran,

// But glut already does this for us
if (DEMO > 4)
glUniforml ght, lighting) ; // lighting only teapot.

// Enable and sable everything around the teapot

