Foundations of Computer Graphics
(Spring 2012)

CS 184, Lecture 9: Raster Graphics and Pipeline
http://inst.eecs.berkeley.edu/~cs184

Lecture Overview
Many basic things tying together course
Raster graphics
Gamma Correction
Color
Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 5)

Introduced now so could cover basics for HW 1,2,3
Course will now “breathe” to review some topics

Some images from wikipedia

Displays and Raster Devices
CRT, flat panel, television (rect array of pixels)
Printers (scanning: no physical grid but print ink)
Digital cameras (grid light-sensitive pixels)
Scanner (linear array of pixels swept across)

Store image as 2D array (of RGB [sub-pixel] values)
In practice, there may be resolution mismatch, resize
Resize across platforms (phone, screen, large TV)

Vector image: description of shapes (line, circle, ...)
E.g., line art such as in Adobe lllustrator
Resolution-Independent but must rasterize to display
Doesn’t work well for photographs, complex images

To Do

Continue working on HW 2. Can be difficult
Get help if you are stuck
Think about HW 3

Images and Raster Graphics

Real world is continuous (almost)

How to represent images on a display?

Raster graphics: use a bitmap with discrete pixels
Raster scan CRT

(paints image
line by line)

Cannot be resized without loss

Compare to vector graphics
Resized arbitrarily. For drawings
But how to represent photos, CG?

Resolutions

Size of grid (1920x1200 = 2,304,000 pixels)
32 bit of memory for RGBA framebuffer 8+ MB

For printers, pixel density (300 dpi or ppi)
Printers often binary or CMYK, require finer grid
iPhone “retina display” > 300 dpi. At 12 inches, pixels
closer than retina’s ability to distinguish angles

Digital cameras in Mega-Pixels (often > 10 MP)
Color filter array (Bayer Mosaic)
Pixels really small (micron)

Monitor Intensities

Intensity usually stored with 8 bits [0...255]
HDR can be 16 bits or more [0...65535]
Resolution-independent use [0...1] intermediate

Monitor takes input value [0...1] outputs intensity
Non-zero intensity for 0, black level even when off
1.0 is maximum intensity (output 1.0/0.0 is contrast)
Non-linear response (as is human perception)
0.5 may map to 0.25 times the response of 1.0
Gamma characterization and gamma correction
Some history from CRT physics and exponential forms

Nonlinearity and Gamma

Exponential function | =a”
| is displayed intensity, a is pixel value
For many monitors y is between 1.8 and 2.2

In computer graphics, most images are linear
Lighting and material interact Iin<1early

Gamma correction Y

Examples with y =2
Input a = 0 leads to final intensity | = 0, no correction
Input a = 1 leads to final intensity | = 1, no correction
Input a = 0.5 final intensity 0.25. Correct to 0.707107
Makes image “brighter” [brightens mid-tones]

Finding Monitor Gamma

Adjust grey until match 0-1 checkerboard to find
mid-point a value i.e.,afor | =0.5 |-z

. log0.5

" loga

Lecture Overview
Many basic things tying together course
Raster graphics
Gamma Correction
Color
Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 5)

Some images from wikipedia

Gamma Correction

Can be messy for images. Usually gamma ~
on one monitor, but viewed on others...

For television, encode with gamma (often
0.45, decode with gamma 2.2)

CG, encode gamma is usually 1, correct

www.dfstudios.co.uk/wp-content/
uploads/2010/12/graph_gamcor.png

Human Perception

Why not just make everything linear, avoid gamma
Ideally, 256 intensity values look linear

But human perception itself non-linear
Gamma between 1.5 and 3 depending on conditions
Gamma is (sometimes) a feature
Equally spaced input values are perceived roughly equal

Lecture Overview

Many basic things tying together course

Raster graphics

Gamma Correction

Color

Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 5)

Some images from wikipedia

RGB Color

Venn, color cube

Not all colors possible

Images from wikipedia

Cones (Trichromatic)

= Each type of cone responds to different range of
frequencies/wavelengths

* Long medium, short
* Also called by color

* Red, green, blue

. Milead!ng: Mormalized sensitivity curves
“Red" does not
mean your red
cones are firing... | §° \
.}' 04
02
400 S00 800 700

Wavelangh (nm)

Color

Huge topic (can read textbooks)
Schrodinger much more work on this than quantum

For this course, RGB (red green blue), 3 primaries

Additive (not subtractive) mixing for arbitrary colors
Grayscale: 0.3R+06 G +0.1B
Secondary Colors (additive, not paints etc.)

Red + Green = Yellow, Red + Blue = Magenta,

Blue + Green = Cyan, R+G+B = White

Many other color spaces
HSV, CIE etc.

Eyes as Sensors

The human eye contains cells that sense light
* Rods i ¢
* Mo color (sort of) » R

* Spread over the retina
* More sensitive

« Cones
* Three types of cones
* Each sensitive to different frequency distribution
» Concentrated in fovea (center of the retina)
* Less sensitive

Slides courtesy Prof. O'Brien

Cone Response

Response of a cone is given by a convolution integral :

L= / (b[A ”' [)\ e 1A continueus version of a dot product

M = j'D[AJ.\IM]cL\

5= / BA)S(A)dA

Color Matching Functions

Using Color Matching Functions

Given color matching functions in matrix form and new light
A1) ... F(Aw) T ‘

C=1 gM) ... g(An)
b(Ar) ... b(An)

&A1)
P = .

$(Aw)

amount of each primary necessary to match is given by C'd

Alpha Compositing

RGBA (32 bits including alpha transparency)
You mostly use 1 (opaque)
Can simulate sub-pixel coverage and effects

Compositing algebra

Hardware Pipeline

generates stream of vertices

Vertex shader called for each vertex
Output is transformed geometry

rasterizes transformed vertices
Output are fragments

Fragment shader for each
fragment
Output is Framebuffer image

CIE XYZ

Imaginary set of color primaries with positive values, XY, Z

KYZ aolor-matching kanction {5WJ based}

Lecture Overview
Many basic things tying together course
Raster graphics
Gamma Correction
Color
Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 5)

Read chapter 8 more details

Rasterization

In modern OpenGL, really only OpenGL function
Almost everything is user-specified, programmable
Interesting early topic, read chapter 8
Basically, how to draw (2D) primitive on screen

Long history
Bresenham line drawing
Polygon clipping
Antialiasing

What we care about
OpenGL generates a fragment for each pixel in triangle
Colors, values interpolated from vertices (Gouraud)

Z-Buffer
Sort fragments by depth
(only draw closest one)

New fragment replaces
old if depth test works

-
OpenGL does this auto

can override if you want
Must store z memory

Simple, easy to use

7-huffer rapresentation

What is the core of 3D pipeline?

For each object (triangle), for each pixel,
compute shading (do fragment program)

Rasterization (OpenGL) in HW 2
For each object (triangle)
For each pixel spanned by that triangle
Call fragment program
Ray Tracing in HW 5: flip loops
For each pixel

For each triangle
Compute shading (rough equivalent of fragment program)

HW 2, 5 take almost same input. Core of class

Course Goals and Overview

Generate images from 3D graphics

Using both rasterization (OpenGL) and Raytracing
HW 2 (OpenGL), HW 5 (Ray Tracing)

Both require knowledge of transforms, viewing
HW 1

Need geometric model for rendering
Splines for modeling (HW 4)

Having fun and writing “real” 3D graphics programs
HW 3 (real-time scene in OpenGL)
HW 6 (final project)

Lecture Overview
Many basic things tying together course
Raster graphics
Gamma Correction
Color
Hardware pipeline and rasterization

Displaying Images: Ray Tracing and Rasterization
Essentially what this course is about (HW 2 and HW 5)

Ray Tracing vs Rasterization

Rasterization complexity is N * d
(N = objs, p = pix, d = pix/object)
Must touch each object (but culling possible)

Ray tracing naive complexity is p * N
Much higher since p >>d
But acceleration structures allow p * log (N)
Must touch each pixel
Ray tracing can win if geometry very complex

Historically, OpenGL real-time, ray tracing slow
Now, real-time ray tracers, OpenRT, NVIDIA Optix
Ray tracing has advantage for shadows, interreflections
Hybrid solutions now common

