
1

Foundations of Computer Graphics Foundations of Computer Graphics
(Spring 2012)(Spring 2012)

CS 184, Lecture 9: Raster Graphics and Pipeline

http://inst.eecs.berkeley.edu/~cs184

To DoTo Do

 Continue working on HW 2. Can be difficult

 Get help if you are stuck

 Think about HW 3

Lecture OverviewLecture Overview

 Many basic things tying together course

 Raster graphics

 Gamma Correction

 Color

 Hardware pipeline and rasterization

 Displaying Images: Ray Tracing and Rasterization
 Essentially what this course is about (HW 2 and HW 5)

 Introduced now so could cover basics for HW 1,2,3
 Course will now “breathe” to review some topics

Some images from wikipedia

Images and Raster GraphicsImages and Raster Graphics

 Real world is continuous (almost)

 How to represent images on a display?

 Raster graphics: use a bitmap with discrete pixels

 Raster scan CRT
(paints image
line by line)

 Cannot be resized without loss

 Compare to vector graphics
 Resized arbitrarily. For drawings
 But how to represent photos, CG?

Displays and Raster DevicesDisplays and Raster Devices
 CRT, flat panel, television (rect array of pixels)

 Printers (scanning: no physical grid but print ink)

 Digital cameras (grid light-sensitive pixels)

 Scanner (linear array of pixels swept across)

 Store image as 2D array (of RGB [sub-pixel] values)
 In practice, there may be resolution mismatch, resize
 Resize across platforms (phone, screen, large TV)

 Vector image: description of shapes (line, circle, …)
 E.g., line art such as in Adobe Illustrator
 Resolution-Independent but must rasterize to display
 Doesn’t work well for photographs, complex images

ResolutionsResolutions
 Size of grid (1920x1200 = 2,304,000 pixels)
 32 bit of memory for RGBA framebuffer 8+ MB

 For printers, pixel density (300 dpi or ppi)
 Printers often binary or CMYK, require finer grid
 iPhone “retina display” > 300 dpi. At 12 inches, pixels

closer than retina’s ability to distinguish angles

 Digital cameras in Mega-Pixels (often > 10 MP)
 Color filter array (Bayer Mosaic)
 Pixels really small (micron)

2

Monitor IntensitiesMonitor Intensities

 Intensity usually stored with 8 bits [0…255]

 HDR can be 16 bits or more [0…65535]

 Resolution-independent use [0…1] intermediate

 Monitor takes input value [0…1] outputs intensity
 Non-zero intensity for 0, black level even when off
 1.0 is maximum intensity (output 1.0/0.0 is contrast)
 Non-linear response (as is human perception)
 0.5 may map to 0.25 times the response of 1.0
 Gamma characterization and gamma correction
 Some history from CRT physics and exponential forms

Lecture OverviewLecture Overview

 Many basic things tying together course

 Raster graphics

 Gamma Correction

 Color

 Hardware pipeline and rasterization

 Displaying Images: Ray Tracing and Rasterization
 Essentially what this course is about (HW 2 and HW 5)

Some images from wikipedia

Nonlinearity and GammaNonlinearity and Gamma

 Exponential function

 I is displayed intensity, a is pixel value

 For many monitors γ is between 1.8 and 2.2

 In computer graphics, most images are linear
 Lighting and material interact linearly

 Gamma correction

 Examples with γ = 2
 Input a = 0 leads to final intensity I = 0, no correction
 Input a = 1 leads to final intensity I = 1, no correction
 Input a = 0.5 final intensity 0.25. Correct to 0.707107
 Makes image “brighter” [brightens mid-tones]

I a

1

'a a

Gamma CorrectionGamma Correction
 Can be messy for images. Usually gamma

on one monitor, but viewed on others…

 For television, encode with gamma (often
0.45, decode with gamma 2.2)

 CG, encode gamma is usually 1, correct

www.dfstudios.co.uk/wp-content/
uploads/2010/12/graph_gamcor.png

Finding Monitor GammaFinding Monitor Gamma

 Adjust grey until match 0-1 checkerboard to find
mid-point a value i.e., a for I = 0.5

log0.5

log

I a

a

Human PerceptionHuman Perception

 Why not just make everything linear, avoid gamma

 Ideally, 256 intensity values look linear

 But human perception itself non-linear
 Gamma between 1.5 and 3 depending on conditions
 Gamma is (sometimes) a feature
 Equally spaced input values are perceived roughly equal

3

Lecture OverviewLecture Overview

 Many basic things tying together course

 Raster graphics

 Gamma Correction

 Color

 Hardware pipeline and rasterization

 Displaying Images: Ray Tracing and Rasterization
 Essentially what this course is about (HW 2 and HW 5)

Some images from wikipedia

ColorColor

 Huge topic (can read textbooks)
 Schrodinger much more work on this than quantum

 For this course, RGB (red green blue), 3 primaries

 Additive (not subtractive) mixing for arbitrary colors

 Grayscale: 0.3 R + 0.6 G + 0.1 B

 Secondary Colors (additive, not paints etc.)
 Red + Green = Yellow, Red + Blue = Magenta,

Blue + Green = Cyan, R+G+B = White

 Many other color spaces
 HSV, CIE etc.

RGB ColorRGB Color

 Venn, color cube

 Not all colors possible

Images from wikipedia

Eyes as SensorsEyes as Sensors

Slides courtesy Prof. O’Brien

Cones (Cones (TrichromaticTrichromatic)) Cone ResponseCone Response

4

Color Matching FunctionsColor Matching Functions CIE XYZCIE XYZ

Alpha CompositingAlpha Compositing

 RGBA (32 bits including alpha transparency)
 You mostly use 1 (opaque)
 Can simulate sub-pixel coverage and effects

 Compositing algebra

Lecture OverviewLecture Overview

 Many basic things tying together course

 Raster graphics

 Gamma Correction

 Color

 Hardware pipeline and rasterization

 Displaying Images: Ray Tracing and Rasterization
 Essentially what this course is about (HW 2 and HW 5)

Read chapter 8 more details

Hardware PipelineHardware Pipeline

 Application generates stream of vertices

 Vertex shader called for each vertex
 Output is transformed geometry

 OpenGL rasterizes transformed vertices
 Output are fragments

 Fragment shader for each
fragment
 Output is Framebuffer image

RasterizationRasterization

 In modern OpenGL, really only OpenGL function
 Almost everything is user-specified, programmable
 Interesting early topic, read chapter 8
 Basically, how to draw (2D) primitive on screen

 Long history
 Bresenham line drawing
 Polygon clipping
 Antialiasing

 What we care about
 OpenGL generates a fragment for each pixel in triangle
 Colors, values interpolated from vertices (Gouraud)

5

ZZ--BufferBuffer

 Sort fragments by depth
(only draw closest one)

 New fragment replaces
old if depth test works

 OpenGL does this auto
can override if you want

 Must store z memory

 Simple, easy to use

Lecture OverviewLecture Overview

 Many basic things tying together course

 Raster graphics

 Gamma Correction

 Color

 Hardware pipeline and rasterization

 Displaying Images: Ray Tracing and Rasterization
 Essentially what this course is about (HW 2 and HW 5)

What is the core of 3D pipeline?What is the core of 3D pipeline?

 For each object (triangle), for each pixel,
compute shading (do fragment program)

 Rasterization (OpenGL) in HW 2
 For each object (triangle)

 For each pixel spanned by that triangle
 Call fragment program

 Ray Tracing in HW 5: flip loops
 For each pixel

 For each triangle
 Compute shading (rough equivalent of fragment program)

 HW 2, 5 take almost same input. Core of class

Ray Tracing Ray Tracing vsvs RasterizationRasterization

 Rasterization complexity is N * d
 (N = objs, p = pix, d = pix/object)
 Must touch each object (but culling possible)

 Ray tracing naïve complexity is p * N
 Much higher since p >> d
 But acceleration structures allow p * log (N)
 Must touch each pixel
 Ray tracing can win if geometry very complex

 Historically, OpenGL real-time, ray tracing slow
 Now, real-time ray tracers, OpenRT, NVIDIA Optix
 Ray tracing has advantage for shadows, interreflections
 Hybrid solutions now common

Course Goals and OverviewCourse Goals and Overview

 Generate images from 3D graphics

 Using both rasterization (OpenGL) and Raytracing
 HW 2 (OpenGL), HW 5 (Ray Tracing)

 Both require knowledge of transforms, viewing
 HW 1

 Need geometric model for rendering
 Splines for modeling (HW 4)

 Having fun and writing “real” 3D graphics programs
 HW 3 (real-time scene in OpenGL)
 HW 6 (final project)

